

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 1 of 17

Report on Greenhouse Gas Emissions Cavagna Group

Year 2023

According to UNI EN ISO 14064-1:2019 standard and GHG Protocol Corporate

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate) Page 2 of 17

INDEX

1	FORE	FOREWORD		
	1.1	PRESENTATION OF THE GROUP	3	
	1.2	CLIMATE CHANGE: A CHALLENGE AND AN OPPORTUNITY	3	
	1.3	OUR COMMITMENT TO THE ENVIRONMENT	4	
2	PRIN	CIPLES	5	
3	GHG	INVENTORY DESIGN AND DEVELOPMENT	5	
	3.1	ORGANIZATIONAL BOUNDARIES	5	
	3.2	OPERATIONAL BOUNDARIES	6	
4	QUA	NTIFICATION OF GHG EMISSIONS	7	
	4.1	BASE-YEAR	7	
	4.2	EXCLUSION	7	
	4.3	QUANTIFICATION METHODOLOGY	7	
	4.4	EMISSION FACTORS	8	
	4.5	GWP	8	
5	GHG	SOURCES	8	
	5.1	GHG SOURCES AND INVENTORY	8	
6	GHG	EMISSIONS	9	
	6.1	ASSESSMENT OF UNCERTAINTY	.13	
7	CON.	TACTS	.13	
8	ACRO	DNYMS	.14	
A NINII	FY 1 _	EMISSION FACTORS	15	

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 3 of 17

1 FOREWORD

1.1 PRESENTATION OF THE GROUP

For over 75 years, the Cavagna Group has been a global leader providing advanced, integrated solutions for processing, distributing, controlling and measuring all kinds of gases at all stages in various supply chains It was founded in 1949 in northern Italy, near Brescia, an area long renowned for its metalworking industry. Today, the Group is made up of 9 vertically integrated production units in Italy and 8 other companies spread out across 5 continents and sells its products in more than 160 countries.

The Group now flanks it consolidated design and production business with an increasing commitment to the sustainable energy transition and digital transformation of the sectors it operates in, with a focus on developing IoT solutions and digitally controlled technologies. It thus remains true to its original mission — wherever gas fuels progress and life, Cavagna is there — and brings innovative solutions to the twin transition.

The current market positioning and supply organization of Cavagna Group is structured into seven fundamental production and market paths, which testify the Group's operational breadth and its wide-ranging commitment to the "glocal" logic: thinking globally and intervening with actions aimed at overseeing individual markets.

New investments have been progressively added to the original production sectors (gas regulation and control systems) which have led to an expansion of the organizational structure and of the scenario of interest. The Group also moved through targeted acquisitions, implementing a configuration in various areas, synergistic for know-how and commercial potential.

An identity that today allows to cover all the technological needs connected to the use of gas, as the group's mission states: "Wherever gas is usedwe are there.

7 key focus area

LPG Solutions

COMPRESSED GASES Solutions

HEALTHCARE Solutions

NATURAL GAS Solutions

ALTERNATIVE FUELS Solutions

GAS METERING Solutions

1.2 CLIMATE CHANGE: A CHALLENGE AND AN OPPORTUNITY

Climate changes have been identified as one of the major challenges that nations, governments, economic systems and citizens will face in the coming decades. Climate changes have significant implications for both natural and human systems and can lead to a significant change in resource use, production processes and economic activities.

The main greenhouse gases (GHG: Greenhouse Gas) from anthropic activities as indicated in the Kyoto Protocol, are carbon dioxide (CO2), methane(CH4), nitrous oxide (N2O) and many fluorinated gases.

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 4 of 17

In this context with an environment oriented market, Cavagna Group has identified the GHG report as an opportunity to improve the knowledge about its emissions and related risks. Also, it is important to identify environmental impact areas in order to develop eco-solutions. This can lead to improved materials and energy efficiency, as well as the development of new products that can reduce greenhouse gas emissions.

1.3 OUR COMMITMENT TO THE ENVIRONMENT

Cavagna Group has always considered environmental commitment as one of the main principles of society.

Therefore, in order to implement effective and active action focused on the protection of the environment, in addition to carrying out activities in compliance with Italian and Community environmental legislation, Cavagna Group has launched a series of actions to prevent, manage and reduce environmental impact.

The Cavagna Group's main plant in Calcinato has implemented an environmental management system certified to the ISO 14001 standard. Since 2024, the Calvisano site of the Cavagna Group, which designs, manufactures, controls and sells gas regulators and accessories, has also been ISO 14001 certified.

Use renewable energy sources

Cavagna Group employs renewable energy sources in some plants to minimize greenhouse gas emissions in order to prevent climate change, unanimously considering the most important global environmental challenges.

A photovoltaic generator was installed in the main plant. It covers the surface of the industrial structure roof of 3.080 m2 with 2.468 high efficiency monocrystalline silicon modules.

The annual energy generated by the plant is little more than 12% of the average annual consumption of the structure.

Moreover, a cogeneration plant for the production of biomass energy (crude vegetable oil) has been installed, with a rated power of 420 kW (electric) and 380 kW (thermal), which produces about 3.15 GWh of electricity per year.

Heat is recovered from the cogeneration engine and used as a heat source to warm up the plant and cool it in summer thanks to an absorption group.

In 2024, the photovoltaic system was also implemented on the Omeca plant, with the installation of two new sectors with a total power of around 1.3 MW.

Reduction of energy consumption

The energy consumption of the Calcinato plant is constantly monitored to identify areas of improvement. To this end, some compressors have recently been replaced with other more efficient ones.

Furthermore, the lighting systems of the structure are equipped with energy saving dimmer and in some areas LED lamps have been installed.

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 5 of 17

2 PRINCIPLES

The study of greenhouse gas (GHG) emissions has been conducted in accordance with the principles of GHG Protocol Corporate - Specifications and guidance at the organization level for the quantification and reporting of greenhouse gas emissions and their removal.

A) Relevance

The boundaries of the study reflect the economic reality of the Cavagna Group. The sources of greenhouse gas emissions from its companies have been identified and the relevant data for quantifying emissions has been collected.

B) Completeness

All greenhouse gas emissions from group companies have been identified, including all greenhouse gases listed in Annex C to ISO 14064-1.

C) Consistency

Data collection and calculation were based on the principle of consistency, so that information can be compared over the years.

Any changes to boundaries, methods or calculation factors will be justified and documented.

D) Accuracy

The Cavagna Group has reduced data collection and calculation errors through internal controls and a specific procedure within its quality system. Audits were carried out on the collected data, with a positive result.

E) Transparency

In the report, the inventory and all the information used for the calculation are transparently reported.

3 GHG INVENTORY DESIGN AND DEVELOPMENT

3.1 ORGANIZATIONAL BOUNDARIES

The organizational boundaries of the study include the following companies, based in various countries, belonging to the Cavagna Group:

•	Bigas
---	-------

CGE

CGA

CG Brazil

CGT

CGUK

Mesura Metering

Cemco Kosangas

CNA

Congrif

Cori

Kosan

Nirmal

KPAL

NP

Omeca

Reca

Zhongshan

Mesura

Repco

Cavagna South Africa

The study was carried out according to the "control approach": the organization has accounted for all GHG emissions over which it has financial and operational control.

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 6 of 17

It is important to note that as of 2020, the company called GGI (Greengear Global) has been closed, which is why it no longer falls within the organisation's confines since the last carbon footprint.

All activities in the facilities within the organizational boundaries have been included in the analysis and accounting.

In some companies of Cavagna Group, data wasn't collected for the following reasons:

- Arusem: company without headquarters and staff;
- Cavagna Group Vietnam: company without production, rented premises for which the fee already includes only energy consumption
- Gazprom Gas Engine Systems LLC: because the control of the Cavagna Group is less than 50%
- Cavagna Group West Africa because it was acquired at the end of 2023 (no significant data)
- rLPG North America LLC because control if the Cavagna Group is less than 50%
- Zhongshan Cavagna Import Export Trade Co. Ltd is considered in the analysis of Zhongshan Cavagna Gas
 Control System Ltd
- Green LG Energy S.r.l. since the control of the Cavagna Group is less than 50 %
- Ecomotive Solutions S.r.l since control of the Cavagna Group is less than 50 %
- Mesura Metering Sayaç Sanayi Ve Ticaret Anonim Şirketi: acquired at the end of 2023; production site not
 yet in operation.
- Kosangas Industrial S.p.A.: inactive company that has never carried out business operations.

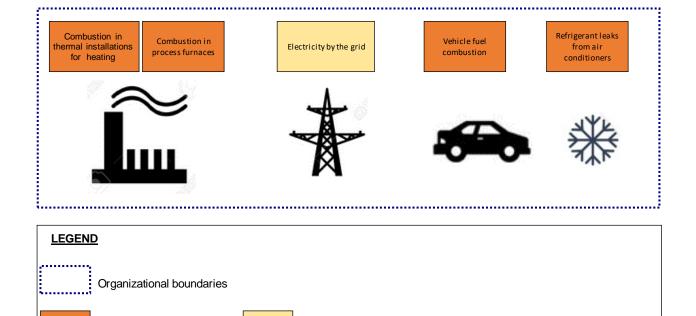
Included in this analysis, as new companies in the group for which their valuation is reasonable, are:

- Repco Srl, which is involved in the design, contract management and manufacture, supply and service of gas, oil and air treatment plants and equipment for oil and gas, petrochemical and energy industries
- o Cavagna Group South Africa, which deals in the distribution of gas control equipment and components.

3.2 OPERATIONAL BOUNDARIES

The categories of GHG emissions provided by the protocol GHG are:

- Scope 1→ Direct GHG emissions: GHG emissions from sources within the organizational boundaries;
- Scope 2→ Energy indirect GHG emissions: GHG emissions from the generation of imported electricity, heat and steam;
- Scope 3→ Other indirect GHG emissions: GHG emissions from the products and services used by the organization, such as emissions from raw materials used, workers' mobility, etc.


The emissions considered in the present study are: Direct Emissions and Energy Indirect Emissions as defined in the following diagram (Scope 1 emissions and Scope 2 emissions).

Other indirect emissions are excluded from this study (Scope 3 emissions).

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 7 of 17

4 QUANTIFICATION OF GHG EMISSIONS

4.1 BASE-YEAR

Direct GHG emissions

The quantification of GHG emissions is related to the activities of the organization, according to the above-mentioned boundaries, from 01/01/2023 to 31/12/2023.

Energy indirect GHG emissions

Being the third year of data collection and quantification, the previous quantification for the year 2021 is taken as the reference year.

4.2 EXCLUSION

All sources within the organizational boundaries are included in the collection and quantification and therefore there are no exclusions.

4.3 QUANTIFICATION METHODOLOGY

The calculation methodology is the following:

GHG emissions = Activity data * EF

where:

GHG Emissions is the quantification of GHG emissions from activity, expressed in terms of tons of

CO2 equivalent (tCO2e)

Activity data is the quantity, generated or used, that describes activity, expressed in terms of

energy (J o MWh), mass (kg) or volume (m³ o l)

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 8 of 17

EF

Is the emission factor that can convert activity data into the resulting GHG emission, expressed in CO2e emitted per activity unit

The result of the calculation is expressed in tonnes of CO2 equivalent (tCO2 e).

All the greenhouse gases listed in Annex C of ISO 14064-1 are considered in the calculation.

As the first report is concerned, no changes to the quantification method are relevant.

4.4 EMISSION FACTORS

The emission factors used in the calculation and the related sources are listed in the Annex 1.

4.5 GWP

The calculation is done using the "IPCC 2013 GWP 100 years" evaluation method that uses the following characterization factors:

Chemical name	Formula	GWP 100 years
Carbon dioxide	CO2	1
Fossil methane	CH4	30
Biogenic methane	CH4	28
Nitrogen dioxide	N2O	265

The results of the study are expressed in kg of CO2 equivalents per unit of product.

5 GHG SOURCES

5.1 GHG SOURCES AND INVENTORY

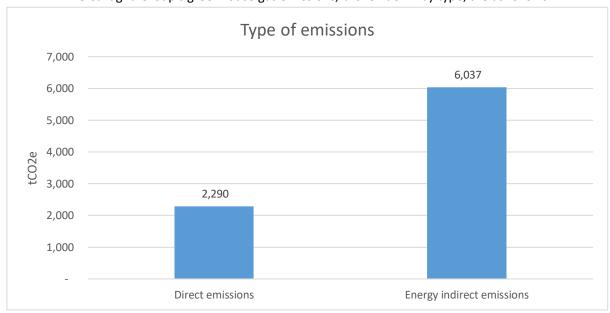
The sources of GHG emissions of the Cavagna Group identified are as follows:

Source	Source of Data	Emission Category
Combustion of fuels in thermal power stations	Fuel purchase invoices	
for heating working environments		
Combustion in process furnaces		
Vehicle fuel combustion	Estimates from the	Direct
	average annual cost of	
	purchasing fuels and	
	purchase invoices	
Refrigerant leaks from air conditioners	Handbooks Plant or	
	estimates	
Use of acetylene for welding	Estimates	
Imported electricity	Electricity purchase	Indirect energy
	invoices	
Combustion of rapeseed oil in a cogenerator for	Fuel purchase invoices	Other indirect
the production of electricity.		

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 9 of 17

Pellet combustion for heating.	
	1


Emission sources consist of central heating, used for heating the buildings, process furnaces, vehicles, welds, fluorinated gas conditioning systems.

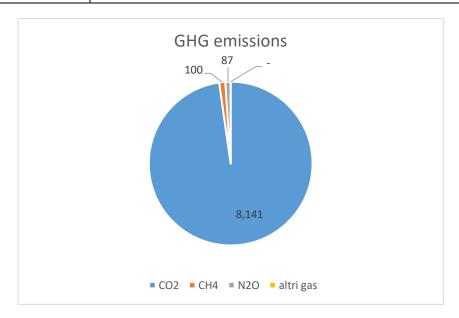
Indirect emissions are related to the electricity from the grid used in offices and in various production processes.

Within the organizational boundaries there are no GHG absorbers.

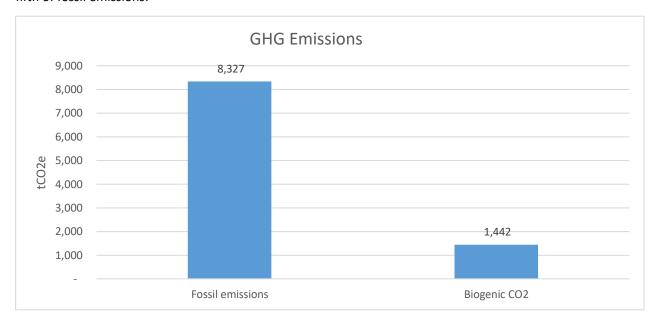
6 GHG EMISSIONS

The Cavagna Group's greenhouse gas emissions, broken down by type, are as follows:

Emissions related to the purchase of consumed electricity predominate.


Compared to 2021, both direct emissions and indirect emissions from energy consumption decreased by 5.3% and about 10.9%, respectively. In general, the figures for 2023 are therefore positive.

Among the various GHG, carbon dioxide prevails, as shown in the following graph (direct + energy indirect GHG emissions):



(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

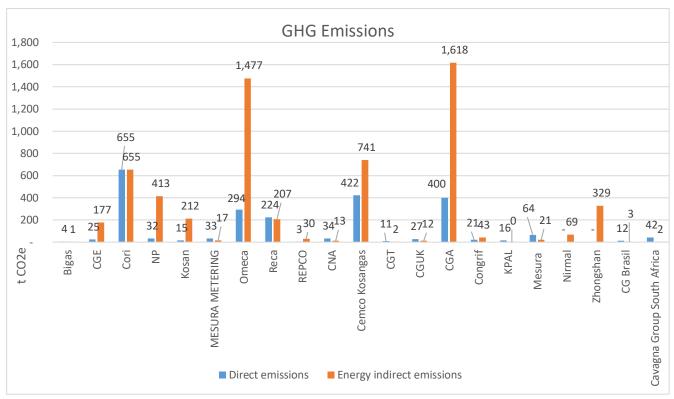
Page 10 of 17

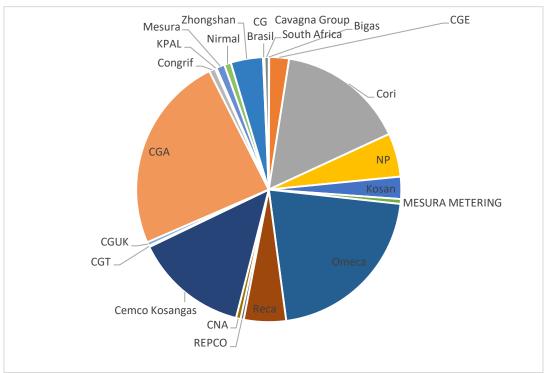
Biogenic CO2 emissions from biomass (rapeseed oil and pellets), which were not taken into account in the previous values because the same amoubt of carbon dioxide is absorbed during biomass growth, are just over a fifth of fossil emissions:

Among the various companies in the group, the plants with higher GHG emissions are

 Cori 	1309 tCO2e
COLL	1303 (0020

• Omeca 1771 tCO2e


• Cemco Kosangas 1162 tCO2e


• CGA 2018 tCO2e

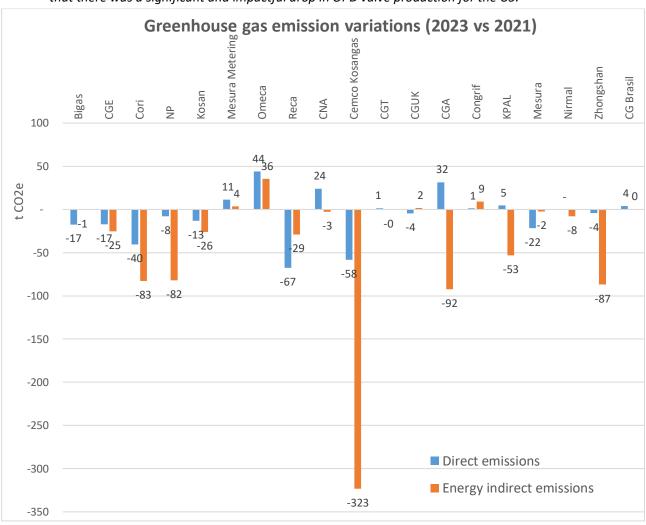
(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 11 of 17

In the calculation of emissions from Omeca, it is not considered the environmental benefit deriving from the electricity produced in the rapeseed oil cogenerator, as this is sold to the national grid and does not go into self-

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 12 of 17

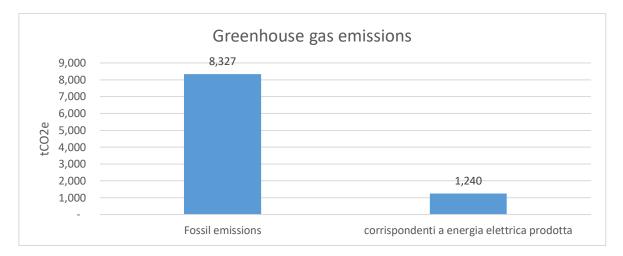

consumption. The environmental advantage deriving from the self-consumption of electricity produced by photovoltaic panels has been considered.

There is no significant change from the previous assessment for the year 2021.

In general, there is a slight overall decrease in emissions for a large proportion of the companies in the group under study, or alternatively, the figures are in line with the last assessment.

On the other hand, the following are significant in terms of emissions:

• Cemco Kosangas: a considerable drop in indirect emissions from power purchase resulting from the fact that there was a significant and impactful drop in OPD valve production for the US.



Finally, the total greenhouse gas emissions of the group were compared with those 'avoided' by the electricity production systems in the group's companies (vegetable oil cogenerators and photovoltaic panels). The calculation was made by multiplying the electricity produced by the grid emission factor of the country of production.

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 13 of 17

NOTE: at the moment no indicators for greenhouse gas emissions were introduced; it will be evaluated whether to introduce them during the next updates of the study.

6.1 ASSESSMENT OF UNCERTAINTY

The results of a greenhouse gas emissions study are always affected by a margin of uncertainty. Each source of data was associated the following uncertainty in order to assess the overall uncertainty

Source	Data sources	Uncertainty
Combustion of fuels	Fuel purchase invoices	2% for natural gas
		5% For other fuels where consumption is
		calculated by estimating stocks at the
		beginning and at the end of the year
Combustion of fuel for road transport	Estimates from the average	20%
vehicles	annual cost of purchasing	
	fuels and purchase invoices	
Losses of greenhouse gas coolers from air	Plant Handbooks or	20%
conditioning systems	estimates	
Use of acetylene for welding	Estimates	20%
Greenhouse gas emissions from the	Electricity purchase	2% because there are tax measuring
produced electricity bought by the net	invoices	instruments

The overall uncertainty of the study is 3%, less than 10%.

7 CONTACTS

Omeca's Environmental Management Function (FGA) is responsible for collecting data and editing this report. It uses the collaboration of quality (or environment) companies representatives involved in the analysis whose contacts are available in the organization charts.

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 14 of 17

Each unit, at the express request of Omeca's environmental management function, provides data on its own company so that this document can be developed.

8 ACRONYMS

CO₂ Carbon dioxide

CH₄ Methane

N₂O Nitrogen dioxide
 CO₂e CO₂ equivalent
 EF Emission factor
 GHG Greenhouse Gas

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 15 of 17

ANNEX 1 – EMISSION FACTORS

The emission factors used in the calculation and the related sources are shown in the following tables.

Stationary combustion					
Fuels	CO2	CH4	N2O		
Natural gas (Italy)	1,995 kg CO2/mc [1]	0,24 kg CH4/t [2]	0,0048 kg N2O/t [2]		
Natural gas (worldwide data)	2692,8 kg CO2/t	0,1	0,00 10 1.6 1.1 20,0 [2]		
	Density: 0,7 kg/mc at 0°C				
	[2]				
LPG (Italy)	3024 kg CO2/t [1]	0,2365 kg CH4/t [2]	0,00473 kg N2O/t [2]		
LPG (worldwide data)	2984,63 kg CO2/t [2]				
diesel – worldwide data	3186,3 kg CO2/t [2]	0,43 kg CH4/t [2]	0,0258 kg N2O/t [2]		
Crude oil – worldwide data	3100,59 kg CO2/t [2]	0,423 kg CH4/t [2]	0,02538 kg N2O/t [2]		
Pellet	1747,2 kg CO2/t [2]	4,68 kg CH4/t [2]	0,0624 kg N2O/t [2]		
	Biogenic CO2				
Rapeseed oil	2181,04 kg CO2/t [2]	0,274 kg CH4/t [2]	0,01644 kg N2O/t [2]		
	Biogenic CO2				

[1] ISPRA - Inventario nazionale italiano UNFCCC anno 2015

[2] GHG protocol - Emission Factors from Cross Sector Tools April 2014 – Stationary Combustion

Transport fuel use				
Fuel	CO2	CH4	N2O	
Petrol	2,27 kg CO2/l [3]	0,0001 kg CH4/l [3]	0,0000 kg N2O/l [3]	
Diesel	2,68 kg CO2/l [3]	0,0000 kg CH4/l [3]	0,0000 kg N2O/l [3]	
LPG	1,61 kg CO2/l [3]	0,0002 kg CH4/l [3]	0,0003 kg N2O/I [3]	
Natural gas	2,67 kg CO2/kg [3]	0,5970 kg CH4/kg [4]	0,0405 kg N2O/kg [4]	

[3] GHG protocol - Emission Factors from Cross Sector Tools April 2014 – Transport fuel – other region

[4] UK government - Greenhouse gas reporting - Conversion factors 2016 - https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2016

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 16 of 17

Refrigerant gas	
HFC 410 A	50% R32 and 50% R125 [5]

[5] Gas stoichiometric composition

Welding	
Acetylene	3,38 kg CO2/kg [5]
CO2	1 kg CO2/kg

[5] Gas stoichiometric composition

Electricity emission factors				
Country	CO2	CH4	N2O	
Italy	325,2 g CO2/kWh [6]	0,21% CO2 emissions [6]	0,50% CO2 emissions [6]	
UK	348,9 g CO2/kWh [7]	0,18% CO2 emissions [7]	0,60% CO2 emissions [7]	
Francia	34,8 g CO2/kWh [8]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	
Portogallo	359,5 g CO2/kWh [8]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	
Brasile	158,1 g CO2/kWh [9]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	
Cile	614 g CO2/kWh [9]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	
Cina	895,5 g CO2/kWh [9]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	
India	903 g CO2/kWh [9]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	
Tailandia	569 g CO2/kWh [9]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	
Turchia	472 g CO2/kWh [10]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	
USA	343,9 g CO2/kWh [12]	0,01% CO2 emissions [12]	0,31% CO2 emissions [12]	
Venezuela	208 g CO2/kWh [11]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	
Vietnam	777,7 g CO2/kWh [9]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	
South Africa	1069,02 g CO2/kWh [9]	0,18% CO2 emissions [13]	0,60% CO2 emissions [13]	

(UNI EN ISO 14064-1:2019 – GHG Protocol Corporate)

Page 17 of 17

[6] ISPRA- Fattori di emissione atmosferica di CO2 e altri gas a effetto serra nel settore elettrico 257/2017 - Tabella 2.4 Dato produzione – dati anno 2017; tabella 2.12 altri gas anno 2016

- [7] UK Government GHG Conversion Factors for Company Reporting -2017
- [8] UE- http://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricity-production-2/assessment
- [9] List of Grid Emission Factors https://pub.iges.or.jp/pub/list-grid-emission-factor
- [10] DEFRA 8th October 2014 Guidelines for DEFRA/DECC's GHG Conversion Factors for Company Reporting.
- [11] ECOMETRICA Technical Paper | Electricity-specific emission factors for grid electricity August 2011 https://ecometrica.com/assets/Electricity-specific-emission-factors-for-grid-electricity.pdf
- [12] EPA https://www.epa.gov/climateleadership/center-corporate-climate-leadership-ghg-emission-factors-hub
- [13] In the absence of data on CH4 and N2O emissions from electricity generation in other countries, the same percentage of UK

The specified emission factors refer only to emissions related to electricity generation and do not include distribution and transformation losses, classified as "other indirect emissions".