## LP-GAS SERVICE TECHNICIAN‘S HANDBOOK

 K? Kosantive
## ( Safety

Reliability
Capacity

## Value

American Inspired, Italian Engineered, Service Tech Approved!

## INTRODUCTION

This Service Technician's Handbook has been developed by Cavagna, Inc., as a quick reference guide to be used by propane technicians performing field installation, operation and maintenance work.

The Handbook has been written in a very straightforward and easy to understand format, with simple tables, diagrams and pictures to help guide service technicians through the process of installing and maintaining a propane gas system.

While the Handbook provides useful and key information, service technicians should also consult their company's policies and procedures; applicable federal, state and local laws; and industry rules and regulations, including the National Fire Protection Association (NFPA) pamphlets 54 and 58.

Additional detailed information regarding regulator descriptions, specifications, installation, maintenance and repair are provided with the instruction manuals for each regulator type.

## TABLE OF CONTENTS

ASME TANKS ..... 3
DOT CYLINDERS ..... 4
PROPANE GAS PROPERTIES ..... 5
DETERMINING TOTAL LOAD ..... 6
PROPANE VAPOR PRESSURE ..... 7
VAPORIZATION RATES
ASME Tanks ..... 8
DOT Cylinders ..... 9
PURGING PROPANE GAS CONTAINERS
Purging Water ..... 10
Purging Air ..... 11
CONTAINER LOCATION AND INSTALLATION
DOT Cylinders ..... 12
Aboveground ASME Tanks ..... 14
Underground ASME Tanks ..... 16
CYLINDER MANIFOLDING ..... 18
PIPE AND TUBING SIZING ..... 19
Sizing Between First and Second Stage Regulator ..... 20
Table A - Copper Tubing ..... 21
Table B - Schedule 40 Black Iron ..... 22
Table C - Polyethylene (CTS) ..... 23
Table D - Polyethylene (IPS) ..... 24
Table E - CSST ..... 25
Sizing Between Second Stage Regulator and Appliances ..... 26
Table F - Copper Tubing Type K ..... 29
Table G - Copper Refrigeration Tubing ..... 30

## TABLE OF CONTENTS (Continued)

REGULATORS ..... 36
First-Stage ..... 38
Second-Stage ..... 40
Integral Two Stage ..... 44
2PSI ..... 46
Automatic Changeover ..... 48
Line/Appliance ..... 49
Installation ..... 51
LEAK TESTING ..... 54
TROUBLESHOOTING ..... 59
Table I - LP-Gas Orifice Capacities ..... 61
Table J - Conversion Factors ..... 63
Table K - Conversion Factors ..... 64
Table L - Flow Equivalents ..... 65
Table M - Temperature Conversion ..... 65

## ASME TANKS

ASME tanks are used for both aboveground and underground propane service.


While they both serve the same purpose, there are some distinct differences which must be observed when being installed. Refer to the sections on Location and Installation on Pages 15 and 17. ASME tanks also come in many different sizes. Domestic installations usually range from 120 gallons to 1,000 gallons.

All ASME tanks have the same seven common appurtenances as listed below:

Filler Valves - Provide a mechanical connection to allow for the transfer of liquid propane into the container. Filler valves are operated every time a container equipped with one is filled and, in some instances, are used more than any other valve on a container.

Pressure Relief Valve - The valve on a propane container or piping system that releases pressure (vapor and/or liquid) when the container's or piping system's internal pressure exceeds the set pressure of the relief valve.

Service Valves - Permit the transfer of vapor or liquid propane from the container to gas burning equipment. They control the flow of product in and out of a container.

Fixed Maximum Liquid Level Gauge - Indicates when the container is filled to its maximum permitted filling level.

Float Gauge - Continuously indicates the liquid level of propane in the container by a float that moves up and down.

Vapor Equalization Valve - Connection used during propane delivery to remove excess tank pressure

Liquid Withdrawal Valve - The valve installed in an opening in a tank through which liquid propane flows when it is being withdrawn or evacuated from the tank.

## DOT CYLINDERS

DOT Cylinders are used in a wide variety of both residential and commercial applications. As noted below, there are four different classes of DOT Cylinders.


There are five common appurtenances utilized with DOT cylinders. However, not all the appurtenances are found on each of the cylinders.

Pressure Relief Valve - Releases excess pressure from cylinders in the event of overfilling or exposure to extremely high temperatures.

Service Valve - Permits the transfer of vapor or liquid propane from the cylinder to gas equipment. It controls the flow of product in and out of a container.

Fixed Maximum Liquid Level Gauge - Indicates when the cylinder is filled to its maximum level.

Float Gauge - Continuously indicates the liquid level in a cylinder.

Filler Valve - Provides a connection to allow for the transfer of liquid propane from a supply tank into the cylinder. Some cylinders may have a separate filler valve.


## PROPANE GAS PROPERTIES

Propane Gas Properties are the characteristics, qualities and combustion data of propane gas.

The table below lists the important properties for Service Technicians to know.

APPROXIMATE PROPERTIES OF PROPANE GAS

| Formula | $\mathrm{C}_{3} \mathrm{H}_{8}$ |
| :---: | :---: |
| Initial Boiling Point, ${ }^{\circ} \mathrm{F}$ | -44 |
| Specific Gravity of Liquid (Water = 1.0) at $60^{\circ} \mathrm{F}$ | 0.504 |
| Weight per Gallon of Liquid at $60^{\circ} \mathrm{F}$, LB | 4.20 |
| Specific Heat of Liquid, BTU/LB at $60^{\circ} \mathrm{F}$ | 0.630 |
| Cubic feet of Vapor per Gallon at $60^{\circ} \mathrm{F}$ | 36.38 |
| Cubic feet of Vapor per Pound at $60^{\circ} \mathrm{F}$ | 8.66 |
| Specific Gravity of Vapor $(\text { Air }=1.0) \text { at } 60^{\circ} \mathrm{F}$ | 1.50 |
| Ignition Temperature in Air, ${ }^{\circ} \mathrm{F}$ | 920-1,120 |
| Maximum Flame Temperature in Air, ${ }^{\circ} \mathrm{F}$ | 3,595 |
| Cubic feet of Air Required to Burn One Cubic Foot of Gas | 23.86 |
| Limits of Flammability in Air, \% of Vapor in Air-Gas Mix: (a) Lower <br> (b) Upper | $\begin{aligned} & 2.15 \\ & 9.60 \end{aligned}$ |
| Latent Heat of Vaporization at Boiling Point: <br> (a) BTU per Pound <br> (b) BTU per Gallon | $\begin{aligned} & 184 \\ & 773 \end{aligned}$ |
| Total Heating Values After Vaporization: <br> (a) BTU per Cubic Foot <br> (b) BTU per Pound <br> (c) BTU per Gallon | $\begin{gathered} 2,488 \\ 21,548 \\ 91,502 \end{gathered}$ |

## DETERMINING TOTAL LOAD

Determining Total Load is the sum of all propane gas used in an installation and is expressed in Btu's (British Thermal Units).

Determining the Total Load is necessary for sizing the tank or cylinders, regulators and piping for an installation. This is done by adding the Btu input of all appliances being used. The Btu information can be found on the nameplate of the appliance, or in the manufacturer's literature.

To properly determine total load, it's also important to ask the customer about any future appliances which may be added at a later date. By adding in those Btu's now, later revisions in the container and piping can be avoided.

The table below shows the approximate Btu input required for common gas appliances.

Gas Required for Common Appliances

| APPLIANCE | APPROX. INPUT BTU/HR |
| :--- | ---: |
| Warm Air Furnace |  |
| Single Family |  |
| Multifamily, per unit | 100,000 |
| Hydronic Boiler, Space Heating | 60,000 |
| Single Family |  |
| Multifamily, per unit | 100,000 |
| Hydronic Boiler, Space \& Water Heating | 60,000 |
| Single Family |  |
| Multifamily, per unit | 120,000 |
| Range, Free Standing, Domestic | 75,000 |
| Built-In Oven or Broiler Unit, Domestic | 65,000 |
| Built-In Top Unit, Domestic | 25000 |
| Water Heater, Automatic Storage, 30 to 40 gal. Tank | 40,000 |
| Water Heater, Automatic Storage, 50 gal. Tank | 35,000 |
| Water Heater, On-Demand | 50,000 |
| Capacity $\boldsymbol{2}$ gal. per minute |  |
| 4 gal. per minute | 142,800 |
| 6 gal. per minute | 285,000 |
| Water Heater, Domestic, Circulating or Side-Arm | 428,000 |
| Refrigerator | 35,000 |
| Clothes Dryer, Type 1 (Domestic) | 3,000 |
| Gas Fireplace direct vent | 35,000 |
| Gas log | 40,000 |
| Barbecue | 80,000 |
| Gas Light | 40,000 |
| Incinerator, Domestic | 2,500 |

## PROPANE VAPOR PRESSURE

Vapor Pressure is what forces propane gas from the container... through the piping system...to the appliance.

Because the amount of pressure inside a container depends on the outside temperature of the air, lower temperatures mean less pressure and higher temperatures mean more pressure. If the container pressure is too low, not enough gas will flow from the container to the appliances. Container pressure is measured in PSIG (Pounds Per Square Inch Gauge).

The table below shows propane vapor pressures at various outside temperatures.

Vapor Pressures of LP-Gases

| Temperature <br> $\left({ }^{\circ} \mathrm{F}\right)$ | Propane Approximate Pressure <br> (PSIG) |
| :---: | :---: |
| -40 | 3.6 |
| -30 | 8 |
| -20 | 13.5 |
| -10 | 23.3 |
| 0 | 28 |
| 10 | 37 |
| 20 | 47 |
| 30 | 58 |
| 40 | 72 |
| 50 | 86 |
| 60 | 102 |
| 70 | 127 |
| 80 | 140 |
| 90 | 165 |
| 100 | 196 |
| 110 | 220 |

## VAPORIZATION RATES FOR ASME TANKS and DOT CYLINDERS

Vaporization is the rate at which liquid propane boils off and becomes vapor.

The larger the wetted surface of the container (that area of the container filled by liquid propane), the faster the liquid boils off into vapor. Therefore, the vaporization rate of a container is dependent upon the temperature of the liquid and the amount of wetted surface of the container.

In determining the proper size container to handle an installations total load, the lowest winter temperature must be taken into account.

It is important to know that because of the various shapes of containers, the wetted surface area will be different and therefore, the vaporization rates will be different.

## ASME Storage Containers

Determining Propane Vaporization Capacity
"Rule of Thumb" Guide for ASME LP-Gas
Storage Containers


D - Outside diameter in inches
L - Overall length in inches
K - Constant for percent volume of liquid in container

| Percentage of <br> Container Filled | $\mathbf{K}$ | Propane Vaporization Capacity at $\mathbf{0}^{\circ} \mathrm{F}$ <br> (BTU/hr) |
| :---: | :---: | :---: |
| 60 | 100 | $\mathrm{D} \times \mathrm{L} \times 100$ |
| 50 | 90 | $\mathrm{D} \times \mathrm{L} \times 90$ |
| 40 | 80 | $\mathrm{D} \times \mathrm{L} \times 80$ |
| 30 | 70 | $\mathrm{D} \times \mathrm{L} \times 70$ |
| 20 | 60 | $\mathrm{D} \times \mathrm{L} \times 60$ |
| 10 | 45 | $\mathrm{D} \times \mathrm{L} \times 45$ |

These formulae allow for the temperature of the liquid to refrigerate $-20^{\circ} \mathrm{F}$, below zero, producing a temperature differential of $20^{\circ} \mathrm{F}$ for the transfer of heat to the air to the cotainer's "wetted" surface, and then into the liquid.
The vapor space area of the vessel is not considered. Its effect is negligible.

## Vaporizing capacities for Other Air Temperatures

Multiply the results obtained with the above formulae, by one of the following factors for the prevailing air temperature.

| Prevailing Air <br> Temperature | Multiplier | Prevailing Air <br> Temperature | Multiplier |
| :---: | :---: | :---: | :---: |
| $-15^{\circ} \mathrm{F}$ | .25 | $+15^{\circ} \mathrm{F}$ | 1.25 |
| $-0^{\circ} \mathrm{F}$ | .50 | $+10^{\circ} \mathrm{F}$ | 1.50 |
| $-5^{\circ} \mathrm{F}$ | .75 | $+5^{\circ} \mathrm{F}$ | 1.75 |
| $0^{\circ} \mathrm{F}$ | 1.00 | $0^{\circ} \mathrm{F}$ | 2.00 |

## VAPORIZATION RATES FOR ASME TANKS and DOT CYLINDERS (Continued)

This second table assumes a DOT 100 pound cylinder under maximum continuous draw. Various temperatures and amounts of propane in the cylinder are shown.

## DOT 100 Pound Cylinder

| Lbs. of Propane In CyI. | Maximum Continuous Draw in BTU Per Hour At Various Temperatures in Degrees $F$. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ} \mathrm{F}$ | $20^{\circ} \mathrm{F}$ | $40^{\circ} \mathrm{F}$ | $60^{\circ} \mathrm{F}$ | $70^{\circ} \mathrm{F}$ |
| 100 | 113,000 | 167,000 | 214,000 | 277,000 | 300,000 |
| 90 | 104,000 | 152,000 | 200,000 | 247,000 | 277,000 |
| 80 | 94,000 | 137,000 | 180,000 | 214,000 | 236,000 |
| 70 | 83,000 | 122,000 | 160,000 | 199,000 | 214,000 |
| 60 | 75,000 | 109,000 | 140,000 | 176,000 | 192,000 |
| 50 | 64,000 | 94,000 | 125,000 | 154,000 | 167,000 |
| 40 | 55,000 | 79,000 | 105,000 | 131,000 | 141,000 |
| 30 | 45,000 | 66,000 | 85,000 | 107,000 | 118,000 |
| 20 | 36,000 | 51,000 | 68,000 | 83,000 | 92,000 |
| 10 | 28,000 | 38,000 | 49,000 | 60,000 | 66,000 |

## PURGING PROPANE GAS CONTAINERS

Purging Propane Gas Containers is the removal of water and air from the containers prior to installation and filling at a customer's site or at the bulk plant.

Water and air in a propane container will seriously contaminate and interfere with an entire propane system, resulting in improper operation of not only the system, but also the customer's appliances. Improper operation will result in costly service calls and needless extra expense.

Both ASME and DOT specifications require water and air be purged from all containers before being placed in service. Further, the procedure MUST always be performed at the bulk plant and NEVER at the customer's location.

## Neutralizing Water

Even though the inside of a container may appear to have no visible moisture present, condensation may have formed on the interior walls, plus the air inside the container may have a relative humidity up to $100 \%$.

To neutralize this moisture, use Anhydrous Methanol in amounts according to the chart below. Note the Anhydrous Methanol must be $99.85 \%$ pure. Under NO circumstances should any substitute products be used.

| Container Type | Minimum Volume <br> Methanol Required |
| :---: | :---: |
| $100 \mathrm{lb} . \mathrm{ICC}$ cylinder | $1 / 8 \mathrm{pt}$. (2 fl. ozs.) |
| $420 \mathrm{lb} . \mathrm{ICC}$ cylinder | $1 / 2 \mathrm{pt}.(8 \mathrm{fl} . \mathrm{ozs})$. |
| 500 gal. tank | $5 \mathrm{pts} .(21 / 2 \mathrm{qts})$. |
| 1000 gal. tank | $10 \mathrm{pts} .(11 / 4 \mathrm{gal})$. |

## PURGING PROPANE GAS CONTAINERS (Continued)

## Purging Air

There is a natural volume of air in all propane containers that must be removed before the first fill. The correct procedure for purging air is as follows. Note that it MUST be done at the bulk plant site, NEVER at the customer's location.

1. Install an unloading adapter on the double check filler valve, leaving it in the closed position.
2. Install a gauge adapter assembly on the service valve POL outlet connection. Exhaust to atmosphere any air pressure in the container.
3. Attach a propane vapor hose from another container to the vapor return valve on the container to be purged.
4. Open the valve on the outlet end of the vapor hose and carefully observe the pressure gauge.
5. When the gauge reading shows 15 psig, shut off the vapor valve on the hose.
6. Switch the lever on the unloading adapter to open the double check filler valve and blow down to exhaustion.
7. Close the unloading adapter lever, allowing the double check filler valve to close.
8. Repeat steps (4), (5), (6), and (7) four more times. Total required time is 15 minutes or less.

After performing the previous steps, the percent of air in the container is reduced as shown in the following table:

|  | \% Air Remaining | $\%$ Propane Remaining |
| :---: | :---: | :---: |
| $1^{\text {st }}$ | Purging | 50 |
| 50 |  |  |
| $2^{\text {nd }}$ | Purging | 25 |
| $3^{\text {rd }}$ Purging | 12.5 | 75 |
| $4^{\text {th }}$ Purging | 6.25 | 87.5 |
| $5^{\text {th }}$ Purging | 3.13 | 93.75 |
| $6^{\text {th }}$ Purging | 1.56 | 96.87 |

## CONTAINER LOCATION and INSTALLATION

While customer preference and marketer ease of exchanging or filling containers is certainly a consideration in Container Location and Installation, precedence MUST be given to state and local regulations, plus NFPA 58.

## Location of DOT Cylinders

The following diagram from NFPA 58 details distance requirements for the placement of DOT cylinders in relation to buildings and property lines.

## Installation of DOT Cylinders

As noted in next page, there are different size DOT cylinders. However, NFPA 58 requires any size cylinder to be placed on a solid non-combustible foundation.

Notes:
(1) 5 ft minimum from relief valve in any direction away from any exterior source of ignition, openings into direct-vent appliances, or mechanical ventilation air intakes. Refer to Table 6.4.4.3.
(2) If the cylinder is filled at the point of use from a cargo tank motor vehicle, the filling connection and vent valve must be at least 10 ft from any exterior source of ignition, openings into direct-vent appliances, or mechanical ventilation air intakes. Refer to 6.4.4.3.
(3) Refer to 6.4.4.3.


# CONTAINER LOCATION and INSTALLATION (Continued) 

Location of Aboveground ASME Tanks

The following diagram from NFPA 58 details distance requirements for the placement of aboveground ASME tanks in relation to buildings and property lines.

## Installation of Aboveground ASME Tanks

As noted on next page, there are different size ASME tanks. However, NFPA 58 requires any size tank to be placed on a solid non-combustible foundation.

Notes:
(1) Regardless of its size, any ASME container filled on site must be located so that the filling connection and fixed maximum liquid level gauge are at least 10 ft from any external source of ignition (e.g., open flame, window AC, compressor), intake to direct-vented gas appliance, or intake to a mechanical ventilation system. Refer to Table 6.4.4.3.
(2) Refer to 6.4.4.3.
(3) This distance can be reduced to no less than 10 ft for a single container of 1200 gal ( $4.5 \mathrm{~m}^{3}$ ) water capacity or less, provided such container is at least 25 ft from any other LP-Gas container of more than $125 \mathrm{gal}\left(0.5 \mathrm{~m}^{3}\right)$ water capacity. Refer to 6.4.1.3.


# CONTAINER LOCATION and INSTALLATION (Continued) 

## Location of Underground ASME Tanks

The following diagram from NFPA 58 details distance requirements for the placement of underground ASME tanks in relation to buildings and property lines.

## Installation of Underground ASME Tanks

Although there are different size ASME tanks, NFPA 58 requires all underground tanks must be placed on a firm footing and anchored depending on water tables. There are also distance requirements relative to the placement of the tanks in relation to buildings and property lines.

For SI units, $1 \mathrm{ft}=0.03048 \mathrm{~m}$.

Notes:
(1) The relief valve, filling connection, and fixed maximum liquid level gauge vent connection at the container must be at least 10 ft from any exterior source of ignition, openings into direct-vent appliances, or mechanical ventilation air intakes. Refer to Table 6.4.4.4.
(2) No part on an underground container can be less than 10 ft from an important
building or line of adjoining property that can be built upon. Refer to Table 6.4.1.1.


## CYLINDER MANIFOLDING

DOT Cylinder manifolding is combining or linking together two or more cylinders to obtain the required gas capacity needed for a particular installation.


Multiple cylinder manifolds are found on both commercial and residential installations. ASME tank manifolding is also common in certain areas.

When installing a typical multiple cylinder manifold, install an automatic 1st stage changeover regulator at the cylinders.


By virtue of its name, the regulator will automatically change from the supply or service cylinder when its gas is exhausted, to the reserve cylinder which is full.


To achieve the required capacity in a manifold system, run high pressure piping from each cylinder into a common line.

## PIPE and TUBING SIZING

Pipe and Tubing Sizing is determining both the right pipe, tubing material and dimensions for a propane gas installation and is critical to the proper and correct operation of that system.
There are several materials used in propane gas installations:

1. Copper - Type L and Type K or Refrigeration
2. Schedule 40 Black Iron
3. Polyethylene - CTS and IPS
4. CSST

There are four sizings to consider:

1. Sizing Between the First and Second Stage Regulator
2. Sizing Between the Second Stage Regulator and Appliances
3. Sizing Between a 2-psi Service Regulator and Line Pressure Regulator
4. Sizing Between a Line Pressure Regulator and Appliances

The following steps, examples and tables will demonstrate each of the four types of sizings you'll experience on the job.

## PIPE and TUBING SIZING (Continued)

## 1. Sizing Between the First and Second Stage Regulator

## Steps

1. Measure the required length of pipe or tubing from the outlet of the first stage regulator to the inlet of the second stage regulator.
2. Determine the total load requirements of the system. (Refer to the Table on Page 6 to review Total Load)
3. Select the required pipe or tubing. Refer to Tables A-F on Pages 18-23.

## Example

Procedures needed for a successful new installation are as follows:

1. The required length of pipe or tubing from the outlet of the first stage regulator to the inlet of the second stage regulator is 26 feet. (Round off up to 30 feet)
2. The system will supply gas to a:

Single family warm air furnace............200,000 Btu's
40 to 50 gallon water heater .................38,000 Btu's
Free standing domestic range ..............65,000 Btu's
Clothes Dryer.......................................35,000 Btu's
The Total Load is 338,000 Btu's
3. Assuming undiluted propane gas, an inlet pressure of 10.0 psi, a pressure drop of 1.0 psi and specific gravity of 1.50, determine sizing for Copper, Schedule 40 Black Iron, Polyethylene or CSST using Tables A-F on Pages 21-26 for each of the four materials. The tables capacities are shown in thousands of BTU per Hour.

TABLE A
Copper Tube Sizing Between First-Stage and Second-Stage Regulators

| Tubing Length (ft) | Outside Diameter Copper Tubing, Types ACR, K \& L |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 3 / 8 \mathrm{in} . \\ & 0.305^{*} \end{aligned}$ | $\begin{aligned} & 1 / 2 \mathrm{in} . \\ & 0.402^{*} \end{aligned}$ | $\begin{aligned} & 5 / 8 \mathrm{in} . \\ & 0.525^{*} \end{aligned}$ | $\begin{aligned} & 3 / 4 \mathrm{in} . \\ & 0.652^{\star} \end{aligned}$ | $\begin{aligned} & 7 / 8 \mathrm{in} . \\ & 0.745^{*} \end{aligned}$ |
| 30 | 283 | 584 | 1190 | 2080 | 2940 |
| 40 | 242 | 500 | 1020 | 1780 | 2520 |
| 50 | 215 | 443 | 901 | 1570 | 2230 |
| 60 | 194 | 401 | 816 | 1430 | 2020 |
| 70 | 179 | 369 | 751 | 1310 | 1860 |
| 80 | 166 | 343 | 699 | 1220 | 1730 |
| 90 | 156 | 322 | 655 | 1150 | 1630 |
| 100 | 147 | 304 | 619 | 1080 | 1540 |
| 150 | 118 | 244 | 497 | 869 | 1230 |
| 200 | 101 | 209 | 426 | 744 | 1060 |
| 250 | 90 | 185 | 377 | 659 | 935 |
| 300 | 81 | 168 | 342 | 597 | 847 |
| 350 | 75 | 155 | 314 | 549 | 779 |
| 400 | 70 | 144 | 292 | 511 | 725 |
| 450 | 65 | 135 | 274 | 480 | 680 |
| 500 | 62 | 127 | 259 | 453 | 643 |
| 600 | 56 | 115 | 235 | 410 | 582 |
| 700 | 51 | 106 | 216 | 378 | 536 |
| 800 | 48 | 99 | 201 | 351 | 498 |
| 900 | 45 | 93 | 189 | 330 | 468 |
| 1000 | 42 | 88 | 178 | 311 | 442 |
| 1500 | 34 | 70 | 143 | 250 | 355 |
| 2000 | 29 | 60 | 122 | 214 | 304 |

©2020 NFPA-58
Note: All table entries are rounded to 3 significant digits.
*Table capacities are based on Type K copper tubing inside diameter (shown), which has the smallest inside diameter of the copper tubing products.
Pipe Sizing Between First-Stage and Second-Stage Regulators: Nominal Pipe Size, Schedule 40

| Pipe Length (ft) | $\begin{aligned} & 1 / 2 \mathrm{in} . \\ & 0.622 \end{aligned}$ | $\begin{aligned} & 3 / 4 \mathrm{in} . \\ & 0.824 \end{aligned}$ | $\begin{gathered} 1 \mathrm{in} . \\ 1.049 \end{gathered}$ | $\begin{gathered} 11 / 4 \mathrm{in} . \\ 1.38 \end{gathered}$ | $\begin{gathered} 11 / 2 \mathrm{in} . \\ 1.61 \end{gathered}$ | $\begin{aligned} & \hline 2 \mathrm{in.} \\ & 2.067 \end{aligned}$ | $\begin{aligned} & \hline 2^{1 / 2} \text { in. } \\ & 3.068 \end{aligned}$ | $\begin{aligned} & \hline 3 \mathrm{in} . \\ & 3.548 \end{aligned}$ | $\begin{aligned} & \hline 4 \mathrm{in} . \\ & 4.026 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | 1480 | 3090 | 5820 | 11900 | 17900 | 34500 | 54900 | 97100 | 198000 |
| 40 | 1260 | 2640 | 4980 | 10200 | 15300 | 29500 | 47000 | 93100 | 170000 |
| 50 | 1120 | 2340 | 4410 | 9060 | 13600 | 26100 | 41700 | 73700 | 150000 |
| 60 | 1010 | 2120 | 4000 | 8210 | 12300 | 23700 | 37700 | 66700 | 136000 |
| 70 | 934 | 1950 | 3680 | 7550 | 11300 | 21800 | 34700 | 61400 | 125000 |
| 80 | 869 | 1820 | 3420 | 7020 | 10500 | 20300 | 32300 | 57100 | 116000 |
| 90 | 815 | 1700 | 3210 | 6590 | 9880 | 19000 | 30300 | 53600 | 109000 |
| 100 | 770 | 1610 | 3030 | 6230 | 9330 | 18000 | 28600 | 50600 | 103000 |
| 150 | 618 | 1290 | 2440 | 5000 | 7490 | 14400 | 23000 | 40700 | 82900 |
| 200 | 529 | 1110 | 2080 | 4280 | 6410 | 12300 | 19700 | 34800 | 71000 |
| 250 | 469 | 981 | 1850 | 3790 | 5680 | 10900 | 17400 | 30800 | 62900 |
| 300 | 425 | 889 | 1670 | 3440 | 5150 | 9920 | 15800 | 27900 | 57000 |
| 350 | 391 | 817 | 1540 | 3160 | 4740 | 9120 | 14500 | 25700 | 52400 |
| 400 | 364 | 760 | 1430 | 2940 | 4410 | 8490 | 13500 | 23900 | 48800 |
| 450 | 341 | 714 | 1340 | 2760 | 4130 | 7960 | 12700 | 22400 | 45800 |
| 500 | 322 | 674 | 1270 | 2610 | 3910 | 7520 | 12000 | 21200 | 43200 |
| 600 | 292 | 611 | 1150 | 2360 | 3540 | 6820 | 10900 | 19200 | 39200 |
| 700 | 269 | 562 | 1060 | 2170 | 3260 | 6270 | 9990 | 17700 | 36000 |
| 800 | 250 | 523 | 985 | 2020 | 3030 | 5830 | 9300 | 16400 | 33500 |
| 900 | 235 | 490 | 924 | 1900 | 2840 | 5470 | 8720 | 15400 | 31500 |
| 1000 | 222 | 463 | 873 | 1790 | 2680 | 5170 | 8240 | 14600 | 29700 |
| 1500 | 178 | 372 | 701 | 1440 | 2160 | 4150 | 6620 | 11700 | 23900 |
| 2000 | 152 | 318 | 600 | 1230 | 1840 | 3550 | 5660 | 10000 | 20400 |

## TABLE C

Polyethylene Plastic Tube Sizing Between First-Stage and Second-Stage Regulators: Nominal Outside Diameter (CTS)

| Plastic Tubing <br> Length <br> (ft) | $1 / 2$ in. <br> SDR 7.00 <br> $(0.445)$ | $\mathbf{1}$ in. <br> SDR 11.00 <br> $(1.007)$ |
| :---: | :---: | :---: |
| 30 | 762 | 5230 |
| 40 | 653 | 4470 |
| 50 | 578 | 3960 |
| 60 | 524 | 3590 |
| 70 | 482 | 3300 |
| 80 | 448 | 3070 |
| 90 | 421 | 2880 |
| 100 | 397 | 2720 |
| 125 | 352 | 2410 |
| 150 | 319 | 2190 |
| 175 | 294 | 2010 |
| 200 | 273 | 1870 |
| 225 | 256 | 1760 |
| 250 | 242 | 1660 |
| 275 | 230 | 1580 |
| 300 | 219 | 1500 |
| 350 | 202 | 1380 |
| 400 | 188 | 1290 |
| 450 | 176 | 1210 |
| 500 | 166 | 1140 |
| 600 | 151 | 1030 |
| 700 | 139 | 951 |
| 800 | 129 | 884 |
| 900 | 121 | 830 |
| 1000 | 114 | 784 |
| 1500 | 92 | 629 |
| 2000 | 79 | 539 |

CTS: Copper tube size.
©2020 NFPA-58
SDR: Standard dimension rating.
Notes:
(1) Dimemsions in parentheses are inside diameter.

## TABLE D

Polyethylene Plastic Pipe Sizing Between First-Stage and Second-Stage Regulators: Nominal Outside Diameter (IPS)

| Plastic Pipe Length (ft) | $\begin{array}{\|c\|} \hline 1 / 2 \mathrm{in} . \\ \text { SDR } 9.33 \\ (0.660) \end{array}$ | $\begin{array}{\|c\|} \hline 3 / 4 \mathrm{in} . \\ \text { SDR } 11.0 \\ (0.860) \end{array}$ | $\begin{array}{\|c} 1 \mathrm{in} . \\ \text { SDR } 11.00 \\ (1.077) \end{array}$ | $\begin{array}{\|c\|} \hline 11 / 4 \mathrm{in} . \\ \text { SDR } 10.00 \\ (1.328) \end{array}$ | $\begin{aligned} & 11 / 2 \mathrm{in} . \\ & \text { SDR } 11.00 \\ & (1.554) \end{aligned}$ | $\begin{gathered} 2 \mathrm{in} . \\ \text { SDR } 11.00 \\ (1.943) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | 2140 | 2390 | 7740 | 13420 | 20300 | 36400 |
| 40 | 1835 | 3670 | 6630 | 11480 | 17300 | 31200 |
| 50 | 1630 | 3260 | 5870 | 10180 | 15400 | 27600 |
| 60 | 1470 | 2950 | 5320 | 9220 | 13900 | 25000 |
| 70 | 1360 | 2710 | 4900 | 8480 | 12800 | 23000 |
| 80 | 1260 | 2530 | 4560 | 7890 | 11900 | 21400 |
| 90 | 1180 | 2370 | 4270 | 7400 | 11200 | 20100 |
| 100 | 1120 | 2240 | 4040 | 6990 | 10600 | 19000 |
| 125 | 990 | 990 | 3580 | 6200 | 9360 | 16800 |
| 150 | 897 | 897 | 3240 | 5620 | 8480 | 15200 |
| 175 | 826 | 826 | 2980 | 5170 | 7800 | 14000 |
| 200 | 778 | 778 | 2780 | 4810 | 7260 | 13000 |
| 225 | 721 | 721 | 2600 | 4510 | 6810 | 12200 |
| 250 | 681 | 681 | 2460 | 4260 | 6430 | 11600 |
| 275 | 646 | 646 | 2340 | 4050 | 6110 | 11000 |
| 300 | 617 | 617 | 2230 | 3860 | 5830 | 10470 |
| 350 | 567 | 567 | 2050 | 3550 | 5360 | 9640 |
| 400 | 528 | 528 | 1910 | 3300 | 4990 | 8970 |
| 450 | 495 | 495 | 992 | 3100 | 4680 | 8410 |
| 500 | 468 | 468 | 937 | 2930 | 4420 | 7950 |
| 600 | 424 | 424 | 849 | 2650 | 4010 | 7200 |
| 700 | 390 | 390 | 781 | 2440 | 3690 | 6620 |
| 800 | 363 | 363 | 726 | 2270 | 3430 | 6160 |
| 900 | 340 | 340 | 682 | 2130 | 3220 | 5780 |
| 1000 | 322 | 322 | 644 | 2010 | 3040 | 5460 |
| 1500 | 258 | 258 | 517 | 933 | 1616 | 4390 |
| 2000 | 221 | 221 | 443 | 498 | 1383 | 3750 |

IPS: Iron pipe size.
©2020 NFPA-58
SDR: Standard dimension ratio.
Notes:
(1) Dimemsions in parentheses are inside diameter.

## TABLE E

Corrugated Stainless Steel Tubing (CSST) Inlet Pressure 5-10 PSI, pressure drop of 3.5 psi .


EHD: Equivalent hydraulic diameter. A measure of the relative hydraulic efficiency between different tubing sizes. The greater the value of EHD, the greater the gas capacity of the tubing.
Notes:
(1) Table does not include effect of pressure drop across the line regulator. Where regulator loss exceeds $1 / 2$ psi (based on 13 in . w.c. outlet pressure), do not use this table. Consult with regulator manufacturer for pressure drops and capacity factors. Pressure drops across a regulator may vary with
flow rate.
(2) CAUTION: Capacities shown in table may exceed maximum capacity for a selected regulator. Consult with regulator or tubing manufacturer for guidance.
(3) Table includes losses for four 90 degree bends and two end fittings. Where additional fittings are used, increase the length of tubing according to
the following equation: $L=1.3 n$, where $L$ is additional length ( ft ) of tubing and n is the number of additional fittings and/or bends.
(4) All table entries are rounded to 3 significant digits.

## PIPE and TUBING SIZING (Continued)

2. Sizing Between Second Stage Regulator and Appliances
3. Measure the required length of pipe or tubing from the outlet of the second stage regulator to the furthest appliance.
4. Determine the specific load requirement for each appliance. (Refer to the Table on Page 6 to review Total Load)
5. Make a sketch of the system and piping.
6. Select the required pipe or tubing. Refer to Tables on Pages 29.

## Example

Procedures and information needed for a successful new installation are as follows:

1. The required length of pipe or tubing (main line) from the outlet of the second stage regulator to the furthest appliance (clothes dryer) is 58 feet. Round off to 60 feet.
2. The system will supply gas to a:


The Total Load is 338,000 Btu's
3. Select the required pipe or tubing.
4. Make a sketch of the system and piping.

## PIPE and TUBING SIZING (Continued)



Assuming undiluted propane gas, an inlet pressure of 10.0 psi, a pressure drop of 1.0 psi and specific gravity of 1.52 , use Tables A-F on Pages 18-23 for Copper, Schedule 40 Black Iron, or CSST. Using the appropriate tables from NFPA 58, select the proper tubing or pipe size for each section of piping, using values in Btuh for the length determined from steps \#2 and step \#3. If the exact length is not on the table, use the next longer length. Do not use any other length for this purpose! Simply select the size that shows at least as much capacity as needed for each piping section.
Total first-stage piping length $=26$ feet (use appropriate table and column)

From $a_{1}$ to $a_{2}$ demand $=338,000$ Btuh: use $1 / 2$ " pipe, or $1 / 2^{\prime \prime}$ ACR copper tubing, or $1 / 2{ }^{\prime \prime}$ PE tubing

Total second-stage piping length = 58 feet (use appropriate table and column)

From $a_{3}$ to $b$, demand $=338,000$ Btuh: use 1 " pipe
From b to c, demand $=138,000$ Btuh: use $3 / 4$ " pipe or $7 / 8^{" ~ A C R ~}$ copper tubing

From c to d, demand = 100,000 Btuh: use $1 / 2$ " pipe or $3 / 4$ " ACR copper tubing, or $3 / 4$ " (23 EHD) CSST

## PIPE and TUBING SIZING (Continued)

From d to e, demand $=35,000$ Btuh: use $1 / 2{ }^{2}$ pipe, or $1 / 2^{\prime \prime}$ ACR copper tubing, or $1 ⁄ 22^{\prime \prime}$ (18 EHD) CSST

From b to f, demand $=200,000$ Btuh: use $3 / 4 "$ pipe
From c to g , demand $=38,000$ Btuh: use $1 / 22^{2}$ pipe, or $5 / 8^{" ~ A C R ~}$ copper tubing, or $1 ⁄ 22^{\prime \prime}(18$ EHD) CSST

From d to h, demand $=65,000$ Btuh: use $1 / 2{ }^{2}$ pipe, or $5 / 8^{\prime \prime}$ ACR copper tubing, or $3 / 41$ (23 EHD) CSST

The CSST sizing tables in NFPA 54 show CSST diameters expressed in Equivalent Hydraulic Diameter (EHD).
Manufacturer EHD comparison charts should be used to convert EHD values to CSST diameters when they are expressed in inches.

## COMPARISON OF CSST EHD FLOW DESIGNATION AND TUBE SIZES (for use with CSST Tables)

| Flow <br> Designation | 13 | 15 | 18 | 19 | 23 | 25 | 30 | 31 | 37 | 47 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tubing Size | $3 / 8^{\prime \prime}$ | $3 / 8^{\prime \prime}$ | $1 / 2^{\prime \prime}$ | $1 / 2^{\prime \prime}$ | $3 / 4^{\prime \prime}$ | $3 / 4 \prime$ | $1^{\prime \prime}$ | $1^{\prime \prime}$ | $1 \frac{1}{4} /$ | $1 \frac{1}{2 \prime \prime}$ | $2 "$ |

From c to d, demand = 100,000 Btuh: use $1 / 22^{\prime \prime}$ pipe or $3 / 4$ " ACR copper tubing, or $3 / 4$ " (23 EHD) CSST

From d to e, demand = 35,000 Btuh: use $1 / 2{ }^{\prime \prime}$ pipe, or $1 / 2{ }^{\prime \prime}$ ACR copper tubing, or $1 / 22^{\prime \prime}(18$ EHD) CSST

From b to f, demand $=200,000$ Btuh: use $3 / 4 "$ pipe
From c to g , demand $=38,000$ Btuh: use $1 / 22^{2}$ pipe, or $5 / 8^{" ~ A C R ~}$ copper tubing, or $1 ⁄ 22^{\prime \prime}(18$ EHD) CSST

From d to $h$, demand $=65,000$ Btuh: use $1 / 2{ }^{2}$ pipe, or $5 / 8^{\prime \prime}$ ACR copper tubing, or $3 / 41$ (23 EHD) CSST

The CSST sizing tables in NFPA 54 show CSST diameters expressed in Equivalent

Hydraulic Diameter (EHD). Manufacturer EHD comparison charts should be used to convert EHD values to CSST diameters when they are expressed in inches.

## TABLE F

Copper Tube Sizing Between Second-Stage Regulator and Appliance: Outside Diameter Copper Tubing, Type ACR, K \& L

| Tubing Length (ft) | 3/8 in. | 1/2 in. | 5/8 in. | $3 / 4 \mathrm{in}$. | 7/8 in. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 45 | 93 | 188 | 329 | 467 |
| 20 | 31 | 64 | 129 | 226 | 321 |
| 30 | 25 | 51 | 104 | 182 | 258 |
| 40 | 21 | 44 | 89 | 155 | 220 |
| 50 | 19 | 39 | 79 | 138 | 195 |
| 60 | 17 | 35 | 71 | 125 | 177 |
| 80 | 15 | 30 | 61 | 107 | 152 |
| 100 | 13 | 27 | 54 | 95 | 134 |
| 125 | 11 | 24 | 48 | 84 | 119 |
| 150 | 10 | 21 | 44 | 76 | 108 |
| 200 | NA | 18 | 37 | 65 | 92 |
| 250 | NA | 16 | 33 | 58 | 82 |
| 300 | NA | 15 | 30 | 52 | 74 |
| 350 | NA | 14 | 28 | 48 | 68 |
| 400 | NA | 13 | 26 | 45 | 63 |

©2020 NFPA-54
Note: *Table capacities are based on Type K copper tubing inside diameter (shown), which has the smallest inside diameter of the copper tubing products.

## TABLE G

Metallic Pipe Sizing Between Single- or Second-Stage (LowPressure) Regulator and Appliance - Schedule 40

| Tubing <br> Length <br> (ft) | $1 / 2$ in. <br> $\mathbf{0 . 6 2 2}$ | $3 / 4$ in. <br> $\mathbf{0 . 8 2 4}$ | $\mathbf{1}$ in. <br> $\mathbf{1 . 0 4 9}$ | $\mathbf{1 1 / 4} \mathbf{\text { in. }}$ <br> $\mathbf{1 . 3 8 0}$ | $\mathbf{1} 1 / 2$ in. <br> $\mathbf{1 . 6 1 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 291 | 608 | 1150 | 2350 | 3520 |
| 20 | 200 | 418 | 787 | 1620 | 2420 |
| 30 | 160 | 336 | 632 | 1300 | 1940 |
| 40 | 137 | 287 | 541 | 1110 | 1660 |
| 50 | 122 | 255 | 480 | 985 | 1480 |
| 60 | 110 | 231 | 434 | 892 | 1340 |
| 80 | 101 | 212 | 400 | 821 | 1230 |
| 100 | 94 | 197 | 372 | 763 | 1140 |
| 125 | 89 | 185 | 349 | 716 | 1070 |
| 150 | 84 | 175 | 330 | 677 | 1010 |
| 200 | 67 | 140 | 265 | 543 | 814 |
| 250 | 62 | 129 | 243 | 500 | 749 |
| 300 | 58 | 120 | 227 | 465 | 697 |
| 350 | 51 | 107 | 201 | 412 | 618 |
| 400 | 46 | 97 | 182 | 373 | 560 |

Note: All table entries are rounded to 3 significant digits. ©2020 NFPA-54

## PIPE and TUBING SIZING (Continued)

## 3. Identifying Distribution Lines for 2-Pound Systems

Distribution lines in 2-psi systems use smaller diameters in the 2-psi sections of the system compared to half-pound (11 inches water column) distribution systems. The same piping materialsschedule 40 metallic pipe, copper tubing, and corrugated stainless steel tubing (CSST) can be used, but run sizing must consider the locations of line regulators that reduce the 2 psig pressure supplied by the 2-psi service regulator. A number of different distribution layouts can be used in 2-psi systems. Examples using different line materials and line regulator locations are illustrated on the following pages.

## 2-PSI Systems Using Corrugated Stainless Steel Tubing

Example 1:


CSST 2-PSI Pressure System
COMPARISON OF CSST EHD FLOW DESIGNATION AND TUBE SIZES (for use with CSST Tables)

| Flow <br> Designation | 13 | 15 | 18 | 19 | 23 | 25 | 30 | 31 | 37 | 47 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tubing Size | $3 / 8^{\prime \prime}$ |  | $1 / 2^{\prime \prime}$ |  | $3 / 4^{\prime \prime}$ |  |  | $1 "$ | $11 / 4^{\prime \prime}$ | $11 / 2^{\prime \prime}$ | $2^{\prime \prime}$ |

Method for single line regulator systems with no branched runs off a manifold (all lines connect a single appliance directly to the manifold).
a) Determine the total gas demand for the system, by adding up the Btuh input from the appliance nameplates, and adding demand as appropriate for future appliances. Use this value to determine the size of the "trunk line" (A) running between the outlet of the 2-PSI service regulator and the line regulator.
b) Determine the tubing diameter needed for each appliance line section using the Btuh input of the appliance and the length of CSST needed to connect the appliance to the manifold.

| Section Description | Load Delivered by Section | Length | CSST <br> Tube Size |
| :--- | :--- | :---: | :---: |
| "A-Trunk | 241,000 Btuh at 2 psig | 20 feet | $1 / 2$ inch |
| "B"—Furnace | 125,000 Btuh at 11 in. w.c. | 10 feet | $1 / 2$ inch |
| "C"-Water Heater | 36,000 Btuh at 11 in. w.c. | 30 feet | $1 / 2$ inch |
| "D"-Dryer | 28,000 Btuh at 11 in. w.c. | 30 feet | $3 / 8$ inch |
| "E"—Range | 52,000 Btuh at 11 in. w.c. | 25 feet | $1 / 2$ inch |
| CSST sizes are determined by using the pressure, length and load for each section. |  |  |  |

## 2-PSI Systems Using Corrugated Stainless Steel Tubing

## Example 2:



CSST 2-PSI Pressure System
COMPARISON OF CSST EHD FLOW DESIGNATION AND TUBE SIZES (for use with CSST Tables)

| Flow <br> Designation | 13 | 15 | 18 | 19 | 23 | 25 | 30 | 31 | 37 | 47 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tubing Size | $3 / 8^{\prime \prime}$ |  | $1 / 2^{\prime \prime}$ |  | $3 / 4^{\prime \prime}$ |  |  | $1 "$ | $1 \frac{1}{4} 4^{\prime \prime}$ | $11 / 2^{\prime \prime}$ | $2 "$ |

Method for single line regulator systems with a branched run off the manifold.
a) Determine the total gas demand for the system by adding up the Btuh input from the appliance nameplates, and adding demand as appropriate for future appliances. Use this value to determine the size of the "trunk line" (A) running between the outlet of the 2-PSI service regulator and the line regulator.
b) Determine the tubing diameter needed for each singleappliance line section using the Btuh input of the appliance and the length of CSST needed to connect the appliance to the manifold.
c) Use the "Longest Run Method" for sizing the appliance lines in the branched runs ( $\mathrm{E}, \mathrm{F}$, and G).

| Section Description | Load Delivered by Section | Length | Longest <br> Run | CSST <br> Tube Size |
| :--- | :--- | :--- | :---: | :---: |
| "A-Trunk | 266,000 Btuh at 2 psig | 20 feet | 20 feet | $1 / 2$ inch |
| "B"-Furnace | 125,000 Btuh at 11 in. w.c. | 10 feet | 10 feet | $1 / 2$ inch |
| "C"-Water Heater | 36,000 Btuh at 11 in. w.c. | 30 feet | 30 feet | $1 / 2$ inch |
| "D"-Dryer | 28,000 Btuh at 11 in. w.c. | 30 feet | 30 feet | $3 / 8$ inch |
| "E"-Grill \& Range | 77,000 Btuh at 11 in. w.c. | 25 feet | 40 feet | $3 / 4$ inch |
| "F"-Grill | 25,000 Btuh at 11 in. w.c. | 15 feet | 40 feet | $1 / 2$ inch |
| "G"-Range | 52,000 Btuh at 11 in. w.c. | 35 feet | 35 feet | $1 / 2$ inch |
| CSST sizes are determined by using the pressure, length and load for each section. |  |  |  |  |

## 2-PSI Systems Using Corrugated Stainless Steel Tubing

Example 3:


CSST 2-PSI Multiple Manifold System

## COMPARISON OF CSST EHD FLOW DESIGNATION AND TUBE SIZES (for use with CSST Tables)

| Flow <br> Designation | 13 | 15 | 18 | 19 | 23 | 25 | 30 | 31 | 37 | 47 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tubing Size | $3 / 8^{\prime \prime}$ |  | $1 / 2^{\prime \prime}$ |  | $3 / 4^{\prime \prime}$ |  |  | $1^{\prime \prime}$ | $11 / 4^{\prime \prime}$ | $1 \frac{1}{2 \prime \prime}$ | $2^{\prime \prime}$ |

Method for single line regulator systems with a branched run off the manifold.
a) Determine the total gas demand for the system by adding up the Btuh input from the appliance nameplates, and adding demand as appropriate for future appliances. Use this value to determine the size of the "trunk line" (A) running between the outlet of the 2-PSI service regulator and the line regulator. Use the "longest length" in the trunk line section $(A+B)$ to size both trunk lines.
b) Determine the total gas demand served by trunk line $B$. Use the "longest length" in the trunk line section (A + B) to size both trunk lines.
c) Determine the tubing diameter needed for each singe appliance line section using the Btuh input of the appliance and the length of CSST needed to connect the appliance to the manifold.

| Section Description | Load Delivered by Section | Length | Longest <br> Run | CSST <br> Tube Size |
| :--- | :--- | :---: | :---: | :---: |
| "A-Trunk | 337,000 Btuh at 2 psig | 20 feet | 60 feet | $1 / 2$ inch |
| "B"—Furnace | 141,000 Btuh at 2 psig | 40 feet | 60 feet | $3 / 8$ inch |

Longest Run for Trunk Section = Distance from 2-PSI service regulator to furthest line regulator
Un-branched appliance runs between the (line regulators) manifolds and appliances are determined using the length and load for each section only.

Step number 3 for multiple manifold systems is completed in the same manner as illustrated in step number 2 in Example 1.

Although CSST distribution lines were used for Examples 1-3 illustrating 2-PSI systems, remember that steel pipe and copper tubing can be used in 2-psi systems as well. Some system designs may call for a combination of these materials.

Regardless of the materials used in the piping runs, be sure that the correct sizing methods and capacity charts are used when determining the diameter for each type of material used, and its place in the distribution system.

## REGULATORS

In both residential and commercial applications, a propane gas regulator controls the flow of gas from an ASME tank or DOT cylinder to the appliance(s) it feeds, compensating for differences in container pressure and a variable load from the intermittent use of appliances.


There are four considerations when selecting a regulator:

1. Appliance Load - The sum of all propane gas used in an installation and is expressed in Btu's (British Thermal Units)
2. Pipe Size - Determining both the right pipe, tubing material and dimensions for a propane gas installation
3. Inlet Pressure - Pressure measured in inches water column to an appliance
4. Outlet Pressure - Pressure measured in psig from any of the regulators
There are six types of Residential/Commercial Kosaniwe regulators:
5. First-Stage - $984 \mathrm{HP} / 988 \mathrm{HP}$
6. Dual Second-Stage - DSS7
7. Second-Stage - 988LP/998LP, with or without dielectric protection
8. Integral Two Stage - 988TW/998TW
9. 2PSI-988TP/998TP
10. Automatic Changeover-524AC

| HP | High Pressure | Tank Pressure to 10 psi |
| :---: | :---: | :---: |
| LP | Low Pressure | 10 psi to 11 inches w.c. |
| DSS | Low Pressure | 30 psi to 11 inches w.c. or 2 psi |
| TW | Twin Stage | Tank pressure to 11 inches w.c. |
| TP | Two Pounds | 10 psi to 2 psi |
| AC | Automatic Changeover |  |

There are two types of Residential/Commercial Kosanime
Governor Regulators: 1. Type 90/2psi 2. Type 95/2psi

All Cavagna Group Kosaniwe regulators are compliant with UL144 Standards and are designed to be installed outdoors following manufacturer's instructions. The pressure governor is compliant with ANSIZ2180 Standards and is designed only for indoor use following manufacturer's instructions.

## REGULATORS (Continued)

## First-Stage

1 - The First-stage regulator is located at the propane storage tank on medium to large Btu/h demand systems. It reduces the high inlet pressure from the tank or cylinder to 10psi, the rate of flow of a second stage regulator.


The First-Stage Regulator must be:

1. Designated as a first-stage regulator suitable for residential applications. DO NOT use high-pressure regulators designed for commercial or industrial applications as a first-stage regulator.
2. Rated with an output capacity in excess of total system demand.
3. Designed to supply outlet pressures within the range needed for the second-stage regulator(s) inlet pressures, typically 5 psig to 10 psig.
4. Equipped with adequate relief capacity to meet the requirements of NFPA codes.

Two first-stage regulators can be used in a parallel installation in unusually high-demand systems.

| Type | Capacities in BTUIhr (SCMH) propane | Inlet connection, inches | Outlet connection, inches | Outlet adjustment range, PSIG (bar) | Outlet pressure setting, PSIG (bar) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 984HP - 04 | 1,000,000 (11.26) | 1/4" NPT | 1/2" NPT | No adjustment | 10 (0.69) |
| 984HP - 05 | 1,000,000 (11.26) | POL |  | No adjustment | 10 (0.69) |
| 984HP - 06¹ | 1,000,000 (11.26) | 1/4" NPT |  | No adjustment | 10 (0.69) |
| 988HP - 07 | 2,000,000 (22.51) | 1/2" NPT |  | 4 to 6 (0.28 to 0.41) | 5 (0.34) |
| 988HP - 08 |  | POL |  |  |  |
| 988HP - 09 | 2,250,000 (25.33) |  | 3/4" NPT |  |  |
| 988HP - 04 | 2,100,000 (23.64) | 1/2" NPT | 1/2" NPT | $\begin{aligned} & 8 \text { to } 12(0.55 \text { to } \\ & 0.83) \end{aligned}$ | 10 (0.69) |
| 988HP - 01 | 2,400,000 (27.01) | $3 / 4 "$ NPT | $3 / 4 "$ NPT |  |  |
| 988HP - 05 | 2,100,000 (23.64) | POL | 1/2" NPT |  |  |
| 988HP - 06 | 2,250,000 (25.33) |  | 3/4" NPT |  |  |

${ }^{1}$ Vent-hole opposite the gauge fittings.

## REGULATORS (Continued)

## Dual Second-Stage



## Kosaniwe

DSS7 Dual Second Stage Pressure Regulators

## Product Description

The DSS7 series regulators are direct action, dual second stage pressure regulators, normally used for domestic or small commercial applications. Installations can be individual or in gas grids (ie LPG Community Systems) and can be directly assembled to a meter configuration, for LP-gas, or other noncorrosive preliminarily treated stable gas.

## Key Features

This device will slam shut, shutting off the gas supply when the outlet pressure falls below the UPSO set point (3-4" w.c. for 11" version or 10 " w.c. for 2 PSI version) or above the OPSO set point (1.5 PSI for $11^{\prime \prime}$ version or 4.5 PSI for 2 PSI version).

This safety is activated when the outlet pressure decreases / increases due to:

- Low regulator outlet pressure (out of gas situations)
- Blockage in the regulator valve seat (overpressure)

The device will shut down preventing gas to flow either downstream or through the vent when activated. It can only be manually reset by a qualified technican after the condition causing the device to activate is resolved.
It will not allow large volumes of gas to be released as traditional relief valves do primarily avoiding a release until the source container can be shut off.

| Type | Capacities in BTUlhr propane ${ }^{1}$ | Inlet connection, inches | Maximum Inlet pressure | Outlet connection, inches | Outlet pressure range | Outlet pressure setting |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { DSS7-M 0090 } \\ & \text { (07.R.235.0090) } \end{aligned}$ | 2,300,000 | 3/4" NPT | 30 psi | 3/4" NPT | 9"-13" w.c. | 11" w.c. |
| $\begin{aligned} & \text { DSS7 -M 0090 } \\ & \text { (07.R.235.0090) } \end{aligned}$ |  |  |  | 3/4" NPT 90 ${ }^{\circ}$ |  |  |
| $\begin{aligned} & \text { DSS7-M 0090 } \\ & \text { (07.R.235.0090) } \end{aligned}$ | 2,500,000 |  |  | 1" NPT |  |  |
| $\begin{aligned} & \text { DSS7 - M 0090 } \\ & (07 . R .235 .0090) \end{aligned}$ |  |  |  | 1" NPT 90 ${ }^{\circ}$ |  |  |
| $\begin{aligned} & \text { DSS7 -M 0090 } \\ & \text { (07.R.235.0090) } \end{aligned}$ | 2,300,000 | 3/4" NPT |  | 3/4" NPT | 1 to 2.2 PSIG | 2 PSIG |
| $\begin{aligned} & \text { DSS7-M 0090 } \\ & \text { (07.R.235.0090) } \end{aligned}$ |  |  |  | 3/4" NPT $90^{\circ}$ |  |  |
| ${ }^{1}$ referred to propane with relative density=0.51 |  |  |  |  |  |  |
| DSS7 - M (in line version) |  |  |  |  |  |  |
| DSS7-N (angle version) |  |  |  |  |  |  |
| Working Temperature: $-40^{\circ} \mathrm{F} \div 140^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C} \div 60^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  |
| Weight: 3.3 Lbs (1.5Kg) |  |  |  |  |  |  |

## REGULATORS (Continued)

## Second-Stage



2 - The Second-stage regulator is used at building service entrance(s) to reduce the approximately 10 psig vapor pressure supplied by the first-stage regulator to approximately 11 inches water column supply to the half-pound distribution piping.

## Inlet/Outlet Configurations



| Type | Capacities in BTUIhr (SCMH) propane | Inlet connection, inches | Outlet connection, inches | Outlet pressure range, inches W.C. (mbar) | Outlet pressure setting, inches W.C. (mbar) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 988LP - 03 | 800,000 (9.01) | 1/2" NPT | 1/2" NPT | 9 to 13 (22 to 32) | 11 (27) |
| 988LP - 34 | 650,000 (7.31) |  | 3/4" NPT |  |  |
| 988LP - 35 | 500,000 (5.63) |  |  |  |  |
| 998LP - 19 | 800,000 (9.01) |  | 1/2" NPT |  |  |
| 998LP - 22 | 1,000,000 (11.26) |  |  |  |  |
| 998LP - 01 |  |  |  |  |  |
| 998LP - $28{ }^{1}$ | 1,400,000 (15.76) |  | 3/4" NPT |  |  |
| 998LP - 02 |  | 3/4" NPT |  |  |  |
| 998LP - 05 | 920,000 (10.36) |  | 3/4" NPT LAT |  |  |
| 998LP - 03 | 1,000,000 (11.26) | 1/2" NPT |  |  |  |
| 998LP - 04 |  | 3/4" NPT | $3 / 4 "$ NPT $90^{\circ}$ |  |  |
| 998LP - $29{ }^{1}$ |  |  |  |  |  |
| 998LP - 10 | 2,300,000 (25.89) |  | 3/4" NPT |  |  |
| 998LP - 09 |  | 1" NPT | 1" NPT |  |  |

## REGULATORS (Continued)

## Second-Stage With Incorporated Dielectric Union



2 - The Second-stage Guardian regulators incorporate a dielectric insulation. This regulator is an all in one solution and there is no need to buy separate dielectric unions. The Guardian reduces installation costs and time as well as potential leak points.

## In accordance with NFPA 58 (2020 edition)

§ 6.11.3.17 Underground metallic piping, tubing, or both which convey LPG from a gas storage container shall be provided with dielectric fi ttings at the building to electrically isolate it from the aboveground portion of the fixed piping system that enters a building. Such dielectric fittings shall be installed above ground and outdoors.

| Type | Capacities in BTUlhr (SCMH) propane | Inlet connection, inches | Outlet connection, inches | Outlet pressure range, inches W.C. (Mbar) | Outlet pressure setting, inches W.C. (Mbar) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 988LP - 37 | 500,000 (5.63) | 1/2" NPT | 1/2" NPT 90 ${ }^{\circ}$ | $\begin{gathered} 9 \text { to } 13 \\ (22 \text { to } 32) \end{gathered}$ | 11 (27) |
| 988LP - 36 | 650,000 (7.31) |  | 3/4" NPT $90^{\circ}$ |  |  |
| 988LP - 24 | 800,000 (9.01) |  |  |  |  |
| 998LP - 39 |  |  | 1/2" NPT |  |  |
| 998LP - 40 | 1,000,000 (11.26) |  |  |  |  |
| 998LP - $41^{1}$ |  |  |  |  |  |
| 998LP - 31 | 1,400,000 (15.76) |  | 3/4" NPT |  |  |
| 998LP - 32 |  | 3/4" NPT |  |  |  |
| 998LP - 35 | 920,000 (10.36) |  | 3/4" NPT LAT |  |  |
| 998LP - 33 | 1,000,000 (11.26) | 1/2" NPT | 3/4" NPT $90^{\circ}$ |  |  |
| 998LP - $42{ }^{1}$ |  | 3/4" NPT |  |  |  |
| 998LP - 34 |  |  |  |  |  |
| 998LP -82 | 100,000 (1.13) | 1/2" Male Flare |  |  |  |

## REGULATORS (Continued)

## Integral Two Stage



3 - The Integral 2-stage regulator is for half-pound systems. The regulator is most frequently used for manufactured homes and other installations with relatively small demand loads and short piping runs.

| Type | Capacities in BTUlhr (SCMH) propane | Inlet connection, inches | Outlet connection, inches | Outlet adjustment range, inches W.C. (mbar) | Outlet pressure setting, inches W.C. (mbar) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 988TW - 15 | 750,000 (8.44) | 1/4" NPT | 1/2" NPT | 9 to 13 (22 to 32) | 11 (27) |
| 988TW - $16^{1}$ |  |  |  |  |  |
| 998TW-20 |  |  |  |  |  |
| 998TW-11 | 1,400,000 (15.76) |  | $3 / 4$ " NPT |  |  |
| 998TW - 12 ${ }^{1}$ |  |  |  |  |  |
| 988TW-28 | 750,000 (8.44) | POL |  |  |  |
| 988TW-17 |  |  | 1/2" NPT |  |  |
| 988TW - 181 |  |  |  |  |  |
| 998TW-21 |  |  |  |  |  |
| 998TW - 13 | 1,400,000 (15.76) |  | 3/4" NPT |  |  |
| 998TW - $14^{1}$ |  |  |  |  |  |

${ }^{1}$ First and Second-Stage spring case vents opposite gauge taps.

## REGULATORS (Continued)

2PSI Regulator (Standard, dielectric and integral two stage)


4- When selecting the 2PSI regulator:

1. Ensure that the first-stage regulator has sufficient Btu/h capacity to supply all installed and anticipated future appliances total Btu/h demand.
2. Select a 2-PSI service regulator for each required service entrance that has sufficient Btu/h capacity to supply all installed and anticipated future appliances the regulator serves.
3. Ensure that suitable line regulators are selected and properly located to supply connected appliances with adequate gas volume (Btu/h) and pressure.


| Type | Capacities in BTUlhr (SCMH) propane | Inlet connection, inches | Outlet connection, inches | Outlet adjustment range, PSIG (bar) | Outlet pressure setting, PSIG (bar) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 988TP - 22 | 700,000 (7.88) | 1/2" NPT | 1/2" NPT | $\begin{aligned} & 1 \text { to } 2.2(0.069 \text { to } \\ & 0.15) \end{aligned}$ | 2 (0.14) |
| 998TP - 06 | 1,680,000 (18.91) | 3/4" NPT | 3/4" NPT |  |  |
| 998TP - 07 | 1,500,000 (16.88) |  | $3 / 4 "$ NPT $90^{\circ}$ |  |  |
| 998TP-08 | 1,460,000 (16.43) | 1/2" NPT | 1/2"NPT |  |  |
| 988TP - 25 | 700,000 (7.88) | 1/2" NPT | 1/2" NPT | Non-adjustable | $\begin{aligned} & 2 \text { PSIG } \\ & \text { (0.14 bar) } \end{aligned}$ |
| 998TP - 36 | 1,680,000 (18.91) | 3/4" NPT | 3/4" NPT | $\begin{gathered} 1 \text { to } 2.2 \text { PSIG } \\ \text { (0.069 to } 0.15 \\ \text { bar) } \end{gathered}$ |  |
| 998TP - 37 | 1,500,000 (16.88) |  | 3/4" NPT 90 |  |  |
| 998TP - 38 | 1,460,000 (16.43) | 1/2" NPT | 1/2" NPT |  |  |
| 988TW-27 | 4,500,000 (5.07) | 1/4" NPT | 3/4" NPT | $\begin{gathered} 1 \text { to 2.2 PSIG } \\ \text { (0.069 to 0.15 bar) } \end{gathered}$ | 2 PSIG (0.14 bar) |
| 988TW-64 | 5,000,000 (5.07) | POL | 1/2" NPT | $\begin{gathered} 1 \text { to 2.2 PSIG } \\ \text { (0.069 to 0.15 bar) } \end{gathered}$ | 2 PSIG (0.14 bar) |
| 998TW-23 | 1,460,000 (16.43) | 1/4" NPT | 3/4" NPT | $\begin{gathered} 1 \text { to 2.2 PSIG } \\ \text { (0.069 to 0.15 bar) } \end{gathered}$ | 2 PSIG (0.14 bar) |

## REGULATORS (Continued)

## Automatic Changeover



5 - The Automatic Changeover regulator combines first-stage and second-stage regulators with a check valve to receive vapor from manifold cylinders. Cylinder vapor pressure is reduced to approximately 11 inches water column at the second-stage regulator outlet.

| Type | Capacities in <br> BTUlhr <br> (SCMH) <br> propane | Inlet <br> connection, <br> inches | Outlet <br> connection, <br> inches | Vent <br> size, <br> inches |
| :---: | :---: | :---: | :---: | :---: |
| 524AC | $600,000(6.75)$ | $1 / 4$ Inverted <br> Flare | $1 / 2$ NPT | $3 / 4$ NPT |

How the Changeover Regulator Works


## REGULATORS (Continued)



Type 90-1/2"


Line/Appliance regulators are used in hybrid pressure systems to reduce the 2 psig outlet pressure from the 2-pound service regulator to required appliance inlet pressures, measured in inches water column. They are installed just before manifold piping or tubing runs, or just before individual appliances.

All Kosantime Line/Appliance regulators are designed for indoor installation and are compliant with the ANSI1Z2180 Standard.

Capacities bases on 1" w.c. pressure drop from set point 1.52 sp gr gas expressed in BTU (PROPANE stabilizer)

| Model | Outlet <br> Pressure | $\mathbf{1 / 2}$ PSIG | $\mathbf{3 / 4}$ PSIG | 1 PSIG | 2 PSIG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 90 | 6" w.c. | 250,000 | 313,000 | 368,000 | 447,000 |
|  | 7" w.c. | 243,000 | 313,000 | 360,000 | 439,000 |
|  | 8" w.c. | 243,000 | 306,000 | 360,000 | 423,000 |
|  | 9" w.c. | 227,000 | 298,000 | 337,000 | 407,000 |
|  | 10" w.c. | 211,000 | 282,000 | 321,000 | 384,000 |
|  | 11" w.c. | 196,000 | 266,000 | 306,000 | 368,000 |
|  | 12" w.c. | 196,000 | 259,000 | 306,000 | 360,000 |


| Model | Outlet <br> Pressure | 1/2 PSIG | 3/4 PSIG | 1 PSIG | 2 PSIG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 95 | 7" w.c. | 570,000 | 632,000 | 701,000 | 810,000 |
|  | 8" w.c. | 563,000 | 618,000 | 701,000 | 798,000 |
|  | 9" w.c. | 536,000 | 597,000 | 674,000 | 784,000 |
|  | 10" w.c. | 516,000 | 591,000 | 632,000 | 777,000 |
|  | 11" w.c. | 473,000 | 564,000 | 583,000 | 741,000 |

The following tables are for the $90 / 2$ psi and $95 / 2$ psi Line/ Appliance regulators respectively:

Presure Drop - 0.64 gr Gas Expressed in CFH (m3/h)

| Pressure Drop | $\begin{aligned} & 7.0 " \mathrm{psi}= \\ & 17 \mathrm{mbar} \end{aligned}$ | $1 / 2 \mathbf{~ p s i}=$ 34.5 mbar | $3 / 4$ psi= 52 mbar | 1 psi= 69 mbar |
| :---: | :---: | :---: | :---: | :---: |
| Flow Rate CFH (m3/h) | $\begin{gathered} 155 \\ (4.3) \end{gathered}$ | $\begin{aligned} & 220 \\ & (6.1) \end{aligned}$ | $\begin{gathered} 280 \\ (7.8) \end{gathered}$ | $\begin{gathered} 310 \\ (8.7) \end{gathered}$ |

Capacities Based on 1" w.c. Pressure Drop from Set Point 0.64 sp gr Gas Expressed in CFH (m3/h)

| Model | Outlet Pressure | $1 / 2 \mathrm{psi}=$ 34.5 mbar | 3/4 psi= 52 mbar | 1 psi= 69 mbar | $\begin{gathered} 2 \mathrm{psi}= \\ 138 \mathrm{mbar} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 90 | 6 " w.c | 160 (4.5) | 200 (5.6) | 235 (6.6) | 285 (8.0) |
|  | 7" w.c | 155 (4.3) | 200 (5.6) | 230 (6.4) | 280 (7.8) |
|  | 8" w.c | 155 (4.3) | 195 (5.5) | 230 (6.4) | 270 (7.6) |
|  | 9" w.c | 145 (4.1) | 190 (5.3) | 215 (6.0) | 260 (7.3) |
|  | 10" w.c | 135 (3.8) | 180 (5.0) | 205 (5.7) | 245 (6.7) |
|  | 11" w.c | 125 (3.5) | 170 (4.8) | 195 (5.5) | 235 (6.6) |
|  | 12" w.c | 125 (3.5) | 165 (5.5) | 195 (5.5) | 230 (6.4) |

Presure Drop - 0.64 gr Gas Expressed in CFH (m3/h)

| Pressure <br> Drop | $7.0 \mathrm{psi}=$ <br> $\mathbf{1 7} \mathbf{~ m b a r}$ | $1 / 2 \mathrm{psi}=$ <br> $\mathbf{3 4 . 5} \mathbf{~ m b a r}$ | $3 / 4 \mathrm{psi}=$ <br> $\mathbf{5 2} \mathbf{~ m b a r}$ | $\mathbf{1} \mathbf{~ p s i}=$ <br> $\mathbf{6 9} \mathbf{~ m b a r}$ |
| :---: | :---: | :---: | :---: | :---: |
| Flow Rate <br> CFH (m3/h) | 359 <br> $(10.1)$ | 504 <br> $(14.3)$ | 627 <br> $(17.7)$ | 719 <br> $(20.3)$ |

Capacities Based on 1" w.c. Pressure Drop from Set Point 0.64 sp gr Gas Expressed in CFH (m3/h)

| Model | Outlet Pressure | $\begin{gathered} 1 / 2 \mathrm{psi}= \\ 34.5 \mathrm{mbar} \end{gathered}$ | $\begin{aligned} & 3 / 4 \mathrm{psi}= \\ & 52 \mathrm{mbar} \end{aligned}$ | $\begin{gathered} 1 \mathrm{psi}= \\ 69 \text { mbar } \end{gathered}$ | $\begin{gathered} 2 \text { psi= } \\ 138 \text { mbar } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 95 | 7" w.c | 364 (10.3) | 403 (11.4) | 447 (12.7) | 517 (14.6) |
|  | 8" w.c | 359 (10.2) | 394 (11.2) | 447 (12.7) | 509 (14.4) |
|  | 9" w.c | 342 (9.7) | 381 (10.8) | 430 (12.2) | 500 (14.2) |
|  | 10" w.c | 329 (9.3) | 377 (10.7) | 403 (11.4) | 496 (14.0) |
|  | 11" w.c | 302 (8.5) | 360 (10.2) | 372 (10.5) | 473 (13.4) |

## REGULATORS (Continued)

## Installation

There are three types of regulator installations:

1. Type A - First and Second Stage Regulators
2. Type B - Integral Two Stage Regulators
3. Type C - First Stage and


## 1. Installation Type A - First and Second Stage Regulators

The first stage regulator is connected to the container valve as per NFPA 58. It supplies a second stage regulator that is usually installed nearby the house.
Length and diameter of gas pipes connecting the first stage regulator to the second stage regulator have to be calculated in order to ensure the minimum supplying pressure to the regulator of second stage ( 5 PSI ) and to ensure the maximum allowed capacity to gas appliances. At the same time length and diameter of gas pipes connecting the second stage regulator outlet to gas appliances have to be calculated in order to respect the maximum authorized capacity and pressure drop, as well as to ensure good functioning of the installation. The first stage regulator must be mounted with cover turned upwards, but slightly bending downwards - please, refer to figure 1 - in order to allow the vent-hole to vent out possible water, which may enter the regulator.
The second stage regulator is installed outdoors and has to have its vent turned downwards, away from eventual openings of the building. See NFPA 58. As far as indoor installation instructions, please refer to the paragraph "Indoor installation".

## REGULATORS (Continued)

## Installation



## 2. Installation Type B - Integral Two Stage Regulators

If the gas container is placed nearby the building, it is possible to use a group of regulation composed by first and second stages integrated, directly connected to gas container valve.
Length and diameter of gas pipes connecting the group of regulation to appliances have to be calculated in order to respect the maximum authorized loss of capacity and to ensure good functioning of the installation.
The group of regulation has to be installed with cover turned upwards, slightly bending forwards.

## REGULATORS (Continued)

Installation



## 3. Installation Type C - First Stage and Two PSI Regulators

Type C installation is similar to Type A installations, however the supplying outlet pressure of the second stage regulator is 2 PSIG rather than 11 " WC. The outlet pressure of the second stage regulator is stabilized by a Line Pressure Regulator placed inside the building, which supply gas appliances at normal pressure of 11 " WC.
Pipe and tubing sizing between First Stage and Two PSI regulators and each appliance must be calculated to ensure that proper vapor pressure is constantly maintained. (Refer to the three steps for properly sizing pipe and tubing on Page 20 and Tables A through F on Pages 21 through 25 to select the required pipe and tubing for the installation.)

## LEAK TESTING

Leak Testing verifies the integrity of the propane piping system from the container to the appliances. NFPA 54 requires a Leak Test with all new installations before they are put into service, when a gas leak is found and repaired, or anytime a system runs out of gas.
Although there are several methods to conduct a leak test, two basic methods are using a manometer and using a Test block gauge.

## PERFORMING A LEAK TEST USING A MANOMETER

Step 1: Close the cylinder service valve(s) and proceed according to your company policy.

Step 2: If appropriate, turn off the appliance manual gas shutoff valve.

Step 3: Using the appropriate fitting and hose, connect the water manometer somewhere downstram of the final-stage regulator but before the appliance gas control valve outlet test tap and reopen the appliance manual gas shutoff valve. This example shows an employee tapping into the inlet side of the gas control valve by removing the inlet test tap and installing a barbed adapter to connect the manometer.

Step 4: SLOWLY open the service valve on the propane container. Leave it open for two or three seconds, and then close it.

Step 5: Release enough gas from the vapor distribution system to drop the system pressure to 9 " $\pm 1 / 2$ " w.c. on the water manometer. This ensures that all regulators in the system are unlocked and that a leak anywhere in the system is communicated to the gauging device.

If the gas pressure increases above the $9 " \pm 1 / 2 "$ w.c., you must then check to ensure the service valve is fully closed and then restart the leak check. If you observe another pressure increase, the container service valve will likely need to be repaired or prelaced in order to complete a valid leak check.

Step 6: Allow the vapor distribution system to remain pressurized for three minutes without showing an increase or decrease in the reading on the manometer. Once the vapor distribution system is proven to be leak free, record the test pressure and the amount of time it took to perform the test according to your company policy.

Step 7: Close the appliance's manual gas shutoff valve, disconnect the water maometer and any fittings used.

Step 8: Open the service valve(s) on the storage container to repressurize the system.
Step 9: Open the appliance manual gas shutoff valve to repressurize the test point and test for leaks using a suitable leak detector solution or device.

Step 10: Place the appliances into service following your company policy.

## USING A TEST-BLOCK GAUGE

A 0-300 psi pressure gauge, such as a test-block gauge, can be used to conduct a leak check. It is installed between the container service valve and the first-stage or integral two-stage regulator.

A test-block gauge is only one type of gauge setup that may be used. Other high-pressure gauges may also be used. Some companies have containers with a test tap located in the container service valve and a gauge is connected directly to it withput disconnecting the inlet side of the first regulator in the system. Some companies use a pressure tap on the inlet side of the first-stage regulator. There are other versions of this type of test tap setup as well.
A significant difference between using a water manometer and the block gauge is that when using the manometer all of the regulators in the system are open and unlocked. When using the block gauge, all regulators in the systems are locked.

For the test-block gauge to indicate a leak in the system, the regulator would need to sense a drop in pressure downstram of it before it would unlock or open.

## PERFORMING A LEAK TEST USING A TEST-BLOCK GAUGE

Step 1: Close the container service valve(s) and proceed according to your company policy.
Step 2: Install the block gauge between the container service valve and the inlet of the first regulator in the system by disconnecting the pigtail from the service valve.
Step 3: SLOWLY open the service valve on the propane storage container. Leave it open for two or three seconds, and then close it.

Step 4: Reduce the pressure reading on the block gauge by 10 psig lower than the container pressure. This is done by loosening the bleeder on the test-block gauge. The pressure reading during this step is dependent upon the ambient temperature on the container.

If the gas pressure increases above this reduced pressure, you must then check to ensure all service valves are fully closed and then restart the leak check. If you observe another pressure increase, the container service valve(s) will likely neet to be repaired or repalced in order to preoperly complete a leak check.

Step 5: Allow the vapor distribution system to remain pressurized for three minutes without showing an increase or decrease in the reading on the gauge.
Step 6: Once the vapor distribution system is proven to be leak free, record the test pressure and the amount of time it took to perform the test according to your company policy.

Step 7: Remove the block gauge and reconnect the regulator to the container service valve using the appropriate connector.

Step 8: Open the service valve(s) on the container to repressurize the system.

Step 9: Check for leaks at the service valve connection and regulator inlet connection using a suitable leak detector solution or device.

Step 10: Place the appliances into service following your company policy.

## WHEN YOU DISCOVER A LEAK

If you leak check device shows an increase or decrease in pressure, then propane may be leaking. Keep the following in mind to help determine the location of the leak.

## Increase in Pressure

If you leak check device shows an increase in pressure, propane may be leaking into the system from a container service valve.

Check to ensure all service valves are fully closed and restart the leak check. If you observe another pressure increase, the container service valve must be repaired or replaced to complete a valid leak check.

## Decrease in Pressure

If you leak check device shows a decrease in pressure, one or more leaks exist in the system.

The source(s) of leakage must be located using a combustible gas indicator, suitable leak detector solution, isolated testing and inspection of piping segments, or a combination of these methods. After the source(s) of leakage are located and repaired, the leak check must be restarted and continued until no change in pressure is observed for 3 minutes, and the vapor distribution system is determine to be gas-tight.

## LEAK TESTING (Continued)

## Leak Detection and Corrective Actions

Once a leak is found, there are five corrective actions you can take.

1. Use a bubble leak detection solution or a mechanical leak detector to locate the leak. Under absolutely no circumstances should you ever use a match or open flame.
2. Apply the solution over each pipe and tubing connection. If the bubbles expand, that indicates a leak at the connection. A large leak may blow the solution away before bubbles have a chance to form.
3. To correct a leak on flared tubing, try tightening the connection. If this does not work, reflare the tubing.
4. To correct a leak on threaded piping, trying tightening or redoping the connection. If the leak continues, the threads on the connection may be bad. If so, cut new threads.
5. If tightening, reflaring, redoping, or cutting new threads do not work, look for sandholes in pipe or fittings, and splits in tubing. Any defective material needs to be replaced.

Note that leaks caused by faulty equipment or parts requires replacement of the equipment or parts.

## TROUBLESHOOTING ASME TANK FITTINGS

Troubleshooting is the process of identifying and fixing a problem which may exist with one or more of the fittings (appurtenances) on an ASME Tank, that prohibits the tank from either correctly being filled, or properly delivering propane vapor through the distribution system.

To reduce the possibility of the malfunctioning of tank fittings, develop a specific inspection and maintenance program with each of your customers. The following four valves should be part of that program.

## Filler Valves

Problem - Pressure discharge continues when filling a tank with a filling hose adapter on the end of the hose end valve, even after all pressure between the hose end valve and fill valve has been bled off.

Cause - The filler valve may have malfunctioned.
Fix - First, do not remove the fill hose, as the internal parts may be blown out. Try lightly tapping the filler valve to close it. If that does not work, disconnect the filler hose adaptor from the hose end valve, leaving the filling hose adaptor on the fill valve. The tank will probably have to be emptied to replace the fill valve.

Some Fill valve designs allow the seat disc to be replaced while the tank is pressurized. On these designs, make sure the lower back check is still functioning by forcing open the upper back check with an adaptor. Take care to dislodge only the upper back check and not both back checks. If there is little leakage with the upper back check open, then the lower back check is in place and the disc can be replaced by following the manufacturer's instructions.

## TROUBLESHOOTING ASME TANK FITTINGS (CONTINUED)

## Relief Valves

Problem - The valve discharges substantially below 240 psig (16.5 to 17.9), or it does not reseat when the tank pressure is lowered.

Cause - The valve will not close.
Fix - Lower the tank pressure by withdrawing gas or cooling the outside of the tank.

Note - Always keep a rain cap on the relief valve to help keep dirt, debris and moisture out of the valve. Also, DO NOT STAND OVER A RELIEF VALVE WHEN TANK PRESSURE IS HIGH, as a relief valve's purpose is to relieve excessive tank pressure.

## Liquid Withdrawal Valves

Problem - When the closing cap is loosened, an excessive amount of liquid may discharge.
Cause - The seat may be damaged or there may be missing internal parts.

Fix - Should only vapor be leaking from under the cap, the connection to the withdrawal
valve can usually be made. However, if after 30 seconds a significant amount of liquid continues to vent from beneath the cap, do not remove the cap. The tank will probably have to be emptied to replace the fill valve.

Note - Because liquid may spray while opening the withdrawal valve, protective clothing should be worn and extreme care taken during the entire procedure.

## Service Valves

Problem - Escaping gas.
Cause - A gas leak from any of the appurtenances.
Fix - Show the custom how to turn off the gas supply at the service valve of the tank. Instruct them that when they do have to turn off the gas supply, to also stay outside the building and away from the tank until a service technician arrives
Remember, under each of these situations to apply your company's policies and procedures when responding to and documenting a troubleshooting process.

## Table I LP-Gas Orifice Capacities LP-Gases (BTU/HR at Sea Level)

| ORIFICE OR DRILL SIZE | PROPANE | BUTANE | ORIFICE OR DRILL SIZE | PROPANE | BUTANE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.008 | 519 | 589 | 51 | 36,531 | 41,414 |
| 0.009 | 656 | 744 | 50 | 39,842 | 45,168 |
| 0.01 | 812 | 921 | 49 | 43,361 | 49,157 |
| 0.011 | 981 | 1,112 | 48 | 46,983 | 53,263 |
| 0.012 | 1,169 | 1,326 | 47 | 50,088 | 56,783 |
| 80 | 1,480 | 1,678 | 46 | 53,296 | 60,420 |
| 79 | 1,708 | 1,936 | 45 | 54,641 | 61,944 |
| 78 | 2,080 | 2,358 | 44 | 60,229 | 68,280 |
| 77 | 2,629 | 2,980 | 43 | 64,369 | 72,973 |
| 76 | 3,249 | 3,684 | 42 | 71,095 | 80,599 |
| 75 | 3,581 | 4,059 | 41 | 74,924 | 84,940 |
| 74 | 4,119 | 4,669 | 40 | 78,029 | 88,459 |
| 73 | 4,678 | 5,303 | 39 | 80,513 | 91,215 |
| 72 | 5,081 | 5,760 | 38 | 83,721 | 94,912 |
| 71 | 5,495 | 6,230 | 37 | 87,860 | 99,605 |
| 70 | 6,375 | 7,227 | 36 | 92,207 | 104,532 |
| 69 | 6,934 | 7,860 | 35 | 98,312 | 111,454 |
| 68 | 7,813 | 8,858 | 34 | 100,175 | 113,566 |
| 67 | 8,320 | 9,433 | 33 | 103,797 | 117,672 |
| 66 | 8,848 | 10,031 | 32 | 109,385 | 124,007 |
| 65 | 9,955 | 11,286 | 31 | 117,043 | 132,689 |
| 64 | 10,535 | 11,943 | 30 | 134,119 | 152,046 |
| 63 | 11,125 | 12,612 | 29 | 150,366 | 170,466 |
| 62 | 11,735 | 13,304 | 28 | 160,301 | 181,728 |
| 61 | 12,367 | 14,020 | 27 | 168,580 | 191,114 |
| 60 | 13,008 | 14,747 | 26 | 175,617 | 199,092 |
| 59 | 13,660 | 15,846 | 25 | 181,619 | 205,896 |
| 58 | 14,333 | 16,249 | 24 | 187,828 | 212,935 |
| 57 | 15,026 | 17,035 | 23 | 192,796 | 218,567 |
| 56 | 17,572 | 19,921 | 22 | 200,350 | 227,131 |
| 55 | 21,939 | 24,872 | 21 | 205,525 | 232,997 |
| 54 | 24,630 | 27,922 | 20 | 210,699 | 238,863 |
| 53 | 28,769 | 32,615 | 19 | 223,945 | 253,880 |
| 52 | 32,805 | 37,190 | 18 | 233,466 | 264,673 |

## BTU Per Cubic Foot = <br> Specific Gravity = <br> Propane-2,516 Butane-3,280 <br> Propane-1.52 <br> Butane-2.01 <br> Pressure at Orifice, Inches Water column = Propane-11 <br> Orifice Coefficent $=$ <br> Propane-0.9 Butane-0.9

Reprinted from NFPA 54, Table E.1.1(b), 2018 ed.

## Table J CONVERSION FACTORS

| Multiply | By | To Obtain |
| :--- | :--- | :--- |
| LENGTH \& AREA |  |  |
| Millimeters | 0.0394 | Inches |
| Meters | 3.2808 | Feet |
| Sq. Centimeters | 0.155 | Sq. Inches |
| Sq. Meters | 10.764 | Sq. Feet |
| VOLUME \& MASS |  |  |
| Cubic Meters | 35.315 | Cubic Feet |
| Liters | 0.0353 | Cubic Feet |
| Gallons | 0.1337 | Cubic Feet |
| Cubic cm. | 0.061 | Cubic Inches |
| Liters | 2.114 | Pints (US) |
| Liters | 0.2642 | Gallons (US) |
| Kilograms | 2.2046 | Pounds |
| Tonnes | 1.1024 | Tons (US) |
| PRESSURE \& FLOW RATE |  |  |
| Millibars | 0.4018 | Inches w.c. |
| Ounces/sq. in. | 1.733 | Inches w.c. |
| Inches w.c. | 0.0361 | Pounds/sq. in. |
| Bars | 14.50 | Pounds/sq. in. |
| Kilopascals | 0.1450 | Pounds/sq. in. |
| Kilograms/sq. cm. | 14.222 | Pounds/sq. in. |
| Pounds/sq. in. | 0.068 | Atmospheres |
| Liters/hr. | 0.0353 | Cubic Feet/hr. |
| Cubic Meters/hr. | 4.403 | Gallons/min. |
| MISCELLANEOUS |  |  |
| Kilojoules | 0.9478 | BTU |
| Calories, kg | 3.968 | BTU |
| Watts | 3.414 | BTU/HR |
| BTU | 0.00001 | Therms |
| Megajoules | 0.00948 | Therms |
|  |  |  |

## Table K CONVERSION FACTORS

| Multiply | By | To Obtain |
| :--- | :--- | :--- |
| LENGTH \& AREA |  |  |
| Inches | 25.4 | Millimeters |
| Feet | 0.3048 | Meters |
| Sq. Inches | 6.4516 | Sq. Centimeters |
| Sq. Feet | 0.0929 | Sq. Meters |
| VOLUME \& MASS |  |  |
| Cubic Feet | 0.0283 | Cubic Meters |
| Cubic Feet | 28.316 | Liters |
| Cubic Feet | 7.481 | Gallons |
| Cubic Inches | 16.387 | Cubic cm. |
| Pints (US) | 0.473 | Liters |
| Gallons (US) | 3.785 | Liters |
| Pounds | 0.4535 | Kilograms |
| Tons (US) | 0.9071 | Tonnes |
| PRESSURE \& FLOW RATE |  |  |
| Inches w.c. | 2.488 | Millibars |
| Inches w.c. | 0.577 | Ounces/sq. in. |
| Pounds/sq. in. | 27.71 | Inches w.c. |
| Pounds/sq. in. | 0.0689 | Bars |
| Pounds/sq. in. | 6.895 | Kilopascals |
| Pounds/sq. in. | 0.0703 | Kilograms/sq. cm. |
| Atmospheres | 14.696 | Pounds/sq. in. |
| Cubic Feet/hr. | 28.316 | Liters/hr. |
| Gallons/min. | 0.2271 | Cubic Meters/hr. |
| MISCELLANEOUS |  |  |
| BTU | 1.055 | Kilojoules |
| BTU | 0.252 | Calories, kg |
| BTU/HR | 0.293 | Watts |
| Therms | 100,000 | BTU |
| Therms | 105.5 | Megajoules |
|  |  |  |

## FLOW EQUIVALENTS AND TEMPERATURE CONVERSION

## TABLE L Flow Equivalents

To convert flow capacities of one kind of gas to flow capacities of a different kind of gas.

|  |  | MULTIPLY <br>  <br>  <br> BY: |
| :--- | ---: | :--- |
| If you have a flow capacity | Propane: | 0.63 |
| (CFH, etc.) in NATURAL GAS | Butane: | 0.55 |
| and want to know equivalent | Air: | 0.77 |
| flow capacity of- |  |  |
| If you have BUTANE and want | Propane: | 1.15 |
| to know equivalent flow | Natural Gas: | 1.83 |
| capacity of- | Air: | 1.42 |
| If you have AIR and want to | Propane: | 0.81 |
| know equivalent flow capacity | Butane: | 0.71 |
| of- | Natural Gas: | 1.29 |
| If you have PROPANE and | Natural Gas: | 0.87 |
| want to know equivalent flow | Butane: | 1.59 |
| capacity of- | Air: | 1.23 |

## TABLE M Temperature Conversion

| ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -40 | -40 | 30 | -1.1 | 90 | 32.2 |
| -30 | -34.4 | 32 | 0 | 100 | 37.8 |
| -20 | -28.9 | 40 | 4.4 | 110 | 43.3 |
| -10 | -23.3 | 50 | 10.0 | 120 | 48.9 |
| 0 | -17.8 | 60 | 15.6 | 130 | 54.4 |
| 10 | -12.2 | 70 | 21.1 | 140 | 60.0 |
| 20 | -6.7 | 80 | 26.7 | 150 | 65.6 |

Portions of this document are Reproduced with permission from NFPA 58-2020, Liquefied Petroleum Gas Code, Copyright © 2020 National Fire Protection Association. This material is not the complete and official position of the NFPA on the referenced subject which is represented solely by the standard in its entirety.

Diagrams copyrighted by the NFPA are taken from the appendix of NFPA 58-2020, may be changed along with the standard and may not entirely and accurately represent the language of the standard which language speaks for itself. Such diagrams are reproduced with permission from NFPA 58-2020, Liquefied Petroleum Gas Code, Copyright © 2020 National Fire Protection Association. This material is not the complete and official position of the NFPA on the referenced subject which is represented solely by the standard in its entirety.

The photograph on Page 4 showing appurtenances on an ASME tank is used with permission from www.propane101.com.
Certain photographs on Pages 3, 4, 18, 28, 33, 34, 35, 51, 52 and 53 are used with permission from the Propane Education \& Research Council.

Some indications on pages 54-58 are used with permission from the Propane Education \& Research Council.

Founded as a family-run business in 1949, the Cavagna Group is today a key industrial partner for gas companies, utility companies and OEMs, supplying them with technology for the regulation, control and metering of gases (gas for energy; industrial, medical and specialty gases; alternative fuels).

The Cavagna Group produces a wide range of products meeting international standards including:

- LPG Valves, Equipment and Regulators
- Engineering and Services dedicated to the LPG industry
- ASME, Fork Lift and Motor Fuel Tank Valves
- Natural Gas regulators for domestic, commercial and industrial use
- Gas meters
- Compressed Gases Cylinder Valves
- Specialty Gases Cylinder Valves
- Refrigerant Gases Cylinder Valves
- Regulation Equipment for Industrial Gases
- Regulation Equipment for Medical Gases
- Comprehensive Range of Welding, Cutting Equipment
- CNG - H2 - AUTOGAS cylinder valves and filling valves
- CNG - AUTOGAS systems

The Group's design engineers and laboratory technicians closely cooperate with worldwide regulatory institutions, both in the writing of international performance standards and in the creation of new products.

The Cavagna Group of companies has invested heavily in personnel, individual training, and robotic technology to meet the quality standards required by our customers and the 145 countries we serve.

NOTE
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

NOTE
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Wherever gas is used，we are there

Cavagna North America Inc．
50 Napoleon Court Somerset，NJ 08873

## Cavagna North America Distribution Center

5910 W By Northwest Blvd．Houston，TX 77040
www．cavagnana．com

## CUSTOMER SERVICE

PH．732．469．2100
Fax 732．469．3344

